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1 Introduction

Sovereign bond markets price not only the fundamentals that determine a government’s

capacity to repay, but also its incentives to dilute existing creditors by issuing additional

debt. Such dilution incentives create a classic dynamic tension: governments borrow more

in the future than is ex-ante optimal, raising default risk and current borrowing costs. To

manage these frictions, many countries have adopted fiscal rules—including debt ceilings,

deficit limits, and expenditure caps—that function as policy anchors for fiscal behavior and

have proliferated over the past four decades (left panel of Figure 1). Over the same period,

changes, suspensions, and breaches of these rules have also become more frequent (right

panel of Figure 1), suggesting that governments value the discipline fiscal rules provide but

also face incentives to revise them when conditions deteriorate. Why do governments adopt

fiscal rules they may later overturn, and what are the implications for sovereign spreads and

macroeconomic outcomes?

Figure 1: Trends in the Adoption and Revision of Fiscal Rules

Countries with fiscal rules Changes, breaches and suspensions

Note: The figure documents the rise in fiscal rules and in subsequent changes, suspensions, and breaches. Data
through 2021 come from the IMF Fiscal Rules Database. Data for 2022–2024 were compiled using IMF Article
IV reports, the Inter-American Development Bank’s macroeconomic country reports, and country-specific
sources. The updated series currently covers the 106 countries included in the 2021 IMF database.

In this paper, we show that self-imposed debt ceilings can serve as intermediate commit-

ment devices that discipline future borrowing while balancing the loss of fiscal flexibility:

ceilings that are too loose provide little commitment, whereas ceilings that are too tight

excessively constrain policy. By “self-imposed,” we mean ceilings that governments volun-

tarily adopt and optimally choose period by period but whose revision entails political or

institutional deviation costs.1 When borrowing above a previously announced ceiling triggers

1For example, violating a ceiling may lower the incumbent party’s probability of reelection.
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such a deviation cost, incumbents can limit the discretion of their future selves and commit

them to a more disciplined borrowing path. This partial-commitment mechanism reduces

expected dilution and lowers spreads—and their volatility—even without an external enforcer,

and without reducing total borrowing. Governments therefore have incentives to choose

ceilings that are costly to revise yet flexible enough to adjust when needed, meaningfully

disciplining future borrowing and improving macroeconomic outcomes.

In this context, we develop a new sovereign default model with long-term debt in which

each government strategically announces a debt ceiling for the following period, and the

successor inherits this promise while retaining the option to borrow above it by paying a

deviation cost.

The underlying mechanism hinges on a simple trade-off that balances two economic forces.

On the one hand, carrying the debt ceiling forward as a binding promise gives the government

partial commitment not to issue excessive long-term bonds in the future, thereby mitigating

the classic “debt dilution” bias in Eaton and Gersovitz (1981)-type models with long-term

debt: when additional issuance today raises the probability of default tomorrow, investors

anticipate legacy-holder ex-post dilution incentives and demand higher yields, lowering bond

prices (Hatchondo and Martinez, 2009; Chatterjee and Eyigungor, 2012). On the other hand,

the same ceiling restricts the government’s ability to respond to adverse shocks by issuing

additional debt, which can make default more attractive in some states and thus raise the

risk of actual repayment failure. The overall welfare impact reflects the trade-off between

lower borrowing costs through enhanced commitment and higher default risk due to reduced

fiscal flexibility. Naturally, endogenous intermediate commitment choices emerge from the

balance between preserving fiscal flexibility and restraining the successor in order to keep

borrowing costs low.

Hence, a central implication of the mechanism is that credible self-imposed constraints

reduce dilution risk and, in turn, lower sovereign spreads and their volatility. To provide

simple motivating evidence for this prediction, we run the following cross-country regressions

in the spirit of Cruces and Trebesch (2013):2

EMBI Spreadi,t = αi + γt + β FiscalRulei,t + Z ′
i,tδ + εi,t,

where the dependent variable is the EMBI Global sovereign spread (a monthly measure of

hard-currency borrowing costs for emerging economies), FiscalRulei,t is a dummy equal to one

2We use a sample of 57 countries up to 2019, augmenting their dataset with the fiscal-rule indicator
constructed from the IMF Fiscal Rules Database (the same source underlying Figure 1). We extend the
original Cruces–Trebesch dataset using the updated series in Arce and Fourakis (2025).
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when country i has an active fiscal rule at time t, and Zi,t collects the lagged restructuring and

haircut variables, global risk proxies, and standard macro controls. Appendix Table 3 shows

that the fiscal-rule coefficient β is consistently negative and statistically significant across

several specifications, implying that countries with a fiscal rule exhibit EMBIG spreads roughly

40–60 basis points lower than otherwise similar economies. Moreover, Appendix Table 4

documents a parallel result for market volatility: fiscal-rule adopters display significantly

lower monthly EMBIG volatility (a reduction of about 4–5 basis points in the standard

deviation of daily returns). This empirical pattern aligns with the mechanism in our model, in

which self-imposed fiscal constraints act as partial commitment devices that reduce perceived

sovereign risk.

Our analysis proceeds in two steps. First, we provide analytical results using a three-period

model in which all debt issued in periods 1 and 2 is repaid (or defaulted on) in period 3, which

isolates the core mechanism. Without commitment, the period-2 government overborrows

relative to the commitment allocation, because it fails to internalize how additional issuance

dilutes legacy bondholders and raises future default risk. Anticipating this behavior, the

period-1 government strategically announces a debt ceiling for period-2 borrowing, backed

by a cost of violating the ceiling, in order to discipline its successor. Depending on the size

of the violation cost, the resulting allocation lies strictly between the no-commitment and

full-commitment benchmarks. Once the cost exceeds a simple threshold—which we also

characterize analytically—the ceiling fully sustains the commitment allocation, and further

tightening has no effect. Moreover, we consider alternative cost functions, under which

breaches may or may not occur in equilibrium but the basic mechanism disciplining period-2

borrowing remains the same.

Second, we develop a stochastic infinite-horizon model in which a sequence of Markov

governments make borrowing and default decisions and announce a debt ceiling for the

following period. The successor inherits this ceiling but may issue above it by paying a

deviation cost, adapting the partial-commitment mechanism of Clymo, Lanteri and Villa

(2023) to sovereign debt limits. Embedding these announcements in a sovereign default

environment is essential: dilution incentives, endogenous default risk, and bond pricing

jointly determine the value of commitment. We calibrate the model to Argentina—where

no formal debt ceiling exists—and conduct counterfactual experiments that evaluate the

welfare consequences of introducing an optimally announced ceiling. The results show that

the government voluntarily imposes a costly ceiling on itself in order to harness the benefits

of partial commitment. By disciplining its successor, the self-imposed rule lowers borrowing

costs and raises welfare, even in the absence of an external enforcer. The magnitude of these

gains depends on the structure of the cost function and on the strength of the deviation
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penalty.

The results highlight a broad message for sovereign debt markets: credible but flexible

fiscal rules can serve as valuable commitment devices, reducing spreads and improving welfare

by mitigating dilution, while fully rigid rules may backfire by increasing default risk. In our

framework, flexibility comes from endogenous, state-contingent ceilings that are costly to

revise; rigidity corresponds to exogenous constraints that bind regardless of conditions.

Related literature. This paper contributes to two strands of the literature: (i) sovereign

default and fiscal rules, and (ii) partial commitment in optimal fiscal policy. The sovereign-

default literature studies dilution and fiscal rules under exogenously given commitment

frictions, while the partial-commitment literature in optimal fiscal policy develops costly-

deviation mechanisms outside default environments. We bring the two together by modeling

debt-ceiling announcements as an endogenous source of partial commitment within a sovereign-

default framework, and we use the framework to show how governments can benefit from

voluntarily restricting their successors’ choices. These results have direct implications for

the macro–finance literature, showing how endogenous fiscal rules shape sovereign spreads

through their effects on commitment and credibility.

Sovereign Default and Fiscal Rules. In sovereign-debt models à la Eaton and Gersovitz

(1981) with long-term debt, the “debt-dilution” time inconsistency highlighted by Hatchondo

and Martinez (2009) and Chatterjee and Eyigungor (2012) generates persistent deficits: new

bond issues dilute legacy claims, raising required yields and lowering bond prices. Subsequent

work has quantified the welfare losses from dilution (Aguiar et al., 2020) and proposed both

state-contingent rules that eliminate dilution (Hatchondo et al., 2016) and simpler rules that

mitigate its impact (Hatchondo et al. 2022; Roch and Roldán 2023), evaluating gains by

comparing commitment versus no-commitment equilibria. Relatedly, Mateos-Planas et al.

(2025) examine how different exogenously imposed forms of commitment—such as commit-

ment to default thresholds or to continuation prices—alter default outcomes in standard

sovereign-debt models. Their commitment structures are taken as given and operate directly

on default conditions. In our framework, commitment instead arises endogenously: govern-

ments choose debt-ceiling announcements period by period to constrain their successors, who

may revise them only by incurring a cost. This mechanism generates state-dependent degrees

of partial commitment as an equilibrium outcome and shows how governments can benefit

from voluntarily restricting the discretion of their future selves. It thereby complements

the normative “rules versus flexibility” literature initiated by Amador et al. (2006) and
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developed in Halac and Yared (2014a, 2017, 2020, 2022) by showing how fiscal rules operate

when the government is endowed with an endogenous, state-dependent choice of rule—a debt

ceiling—that it strategically announces each period and uses in equilibrium to discipline its

future selves, while allowing successors to breach it at a political and institutional cost.3

Optimal Fiscal Policy with Partial Commitment and Fiscal Announcement. Our framework

is related to the literature on optimal fiscal policy under limited commitment and on fiscal

announcements. First, on intermediate commitment (“partial commitment”), we build

on the idea that governments make non-contingent announcements but face costs when

deviating from them. Papers in this literature that study partial commitment typically model

re-optimization as arriving exogenously (e.g. Debortoli and Nunes, 2010, 2013), treating

deviations as opportunities that arise independently of the state. Unlike these approaches, we

adopt the costly-deviation mechanism of Clymo et al. (2023) and adapt it to sovereign debt

ceilings and default, so that the extent of reneging—and thus the degree of commitment—is

determined endogenously by the model’s state variables. This state-dependent slack then

shapes strategic debt-ceiling announcements. Relatedly, Farhi (2010), Klein et al. (2008),

and Karantounias (2019) use generalized Euler–equation methods to explore time consistency

and default, while Clymo and Lanteri (2020) show that even short-horizon commitment

can sustain first-best outcomes. We extend their approach by introducing costly, state-

contingent reneging of debt ceilings in a stochastic economy with sovereign default, where

dilution incentives, endogenous default risk, and bond pricing jointly determine the value of

commitment.

Second, on fiscal announcements per se, we bridge optimal-policy theory with the empirical

and quantitative work that treats announcements as exogenous drivers of expectations.

Empirical papers such as Mertens and Ravn (2012) and Alesina et al. (2015) document the

macro effects of announced plans, and quantitative studies like Mertens and Ravn (2011)

and Fernández-Villaverde et al. (2015) embed announcement “shocks” in DSGE settings.

By distinguishing between announced and implemented policies—and by endogenizing the

cost of deviating from announcements—we embed insights from the empirical literature on

fiscal announcements in an optimal-policy framework. Our approach also relates to the

fiscal-rules literature (e.g., King et al. 1988; Schmitt-Grohe and Uribe 1997; Athey et al.

2005; Halac and Yared 2014b), which shows that limits on state contingency can amplify

fluctuations. We demonstrate that costly, partial state contingency—driven by political

constraints on commitment and strategic debt-ceiling announcements in a sovereign-default

3See also Espino et al. (2022) for an analysis of fiscal-rule suspensions during the COVID-19 crisis.
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environment—generates rich dynamics with meaningful policy implications for the design of

fiscal rules and debt-management frameworks.

Structure of the paper. The remainder of the paper is organized as follows. Section 2

presents a three-period version of the model and delivers analytical results that clarify the

mechanism. Section 3 develops the infinite-horizon model with endogenous debt-ceiling

announcements, showing that self-imposed ceilings improve borrowing terms by mitigating

debt dilution but may also constrain fiscal flexibility and raise default risk; the resulting

strategic interactions generate intermediate, history-dependent fiscal rules that enhance

welfare and reduce spreads. Section 4 concludes.

2 Stylized Model

This section presents a tractable three-period benchmark that isolates the core mechanism

behind our debt-ceiling results.

Environment. Time is discrete with three periods, t ∈ {1, 2, 3}. The economy has no

output in the first two periods, y1 = y2 = 0, and is endowed with a deterministic amount

ȳ > 0 in the final period. The government has access to international financial markets

and can borrow from risk-neutral foreign investors in periods 1 and 2. The representative

government values consumption according to

3∑
t=1

βt−1u(ct), where u(c) = −1

c
,

corresponding to CRRA preferences with risk aversion σ = 2.

The government issues debt in periods 1 and 2, both maturing at t = 3. Let b1 denote

the face value issued in period 1 (long-term debt) and b2 the face value issued in period 2

(short-term debt). Total obligations due at maturity are therefore B ≡ b1 + b2.

For analytical convenience, define the repayment slack

x ≡ ȳ −B

ȳ
∈ (0, 1], so that B = ȳ(1− x). (1)

The variable x measures the fraction of endowment remaining after meeting debt obligations,

or equivalently, the economy’s fiscal space at repayment. Higher x indicates lower debt and a

greater capacity to repay.
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Default, pricing, and period-3 utility. At t = 3, the government decides whether to

repay or default. Output is ȳ > 0, and default entails an output loss governed by a random

cost parameter θ, which is realized and observed by the government at date 3. We assume θ

follows a Pareto distribution on [1,∞) with shape parameter α = 1
2
, so higher realizations

of θ correspond to more severe output losses. If the government defaults, it retains only ȳ/θ,

whereas full repayment requires transferring ȳ − B to creditors. Default occurs whenever

repayment is more costly than default:

ȳ −B︸ ︷︷ ︸
Cost of repayment

<
ȳ

θ︸︷︷︸
Resources in default

⇐⇒ θ <
1

x
.

Intuitively, when debt obligations are large relative to output, the fiscal space x shrinks, so

the government is willing to default even for relatively low realizations of θ.

Because lenders are risk neutral and the risk-free rate is normalized to one, the bond price

equals the probability of repayment,

q(B) = Pr(θ > 1/x) = xα =
√
x. (2)

Higher debt (lower slack x) reduces the repayment probability and hence the bond price. At

t = 3, consumption c3 represents the government’s resources after deciding whether to repay

or default. If it repays, it transfers ȳ − c3 = B to creditors; if it defaults, it avoids repayment

but loses a fraction of output. Formally,

c3 =


ȳ −B, if the government repays,

ȳ

θ
, if the government defaults,

(3)

where θ ≥ 1 governs the output loss in default. Consumption is therefore lower either because

resources are used to service debt or because output is reduced by the default penalty. Given

the pricing kernel (2), consumption (3), and the stochastic assumption on θ, the expected

utility at t = 3 conditional on B is

E[u(c3) | B] =
1

ȳ

(
1− 2x−1/2

)
, (4)

which captures the welfare cost of debt through two channels: a lower probability of repayment,

embedded in q(B), and reduced consumption in default states.
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2.1 Sustaining Commitment through a Debt Ceiling

We now use the three-period framework to characterize how a debt ceiling can help sustain

the commitment allocation. We begin by characterizing the commitment and no-commitment

allocations. This benchmark allows us to isolate the fundamental tension between the

period-2 government’s borrowing incentives and the welfare of the period-1 government.

Under commitment, period-2 borrowing is predetermined and cannot respond myopically,

while under no commitment the period-2 government issues excessive debt because it does

not internalize how additional borrowing dilutes legacy bondholders and raises default risk.

Having established these extremes, we then introduce an intermediate case in which the

period-1 government can announce a debt ceiling, but the period-2 government may exceed

it only by paying a cost.

We allow the cost to follow a simple proportional parametric form, which nests both fixed

and proportional costs as special cases. Suppose that whenever the period–2 government

borrows above a ceiling b̄, it incurs a period–2 utility cost given by

Φ(b2, b̄) = ϕ (b2 − b̄)ζ 1{b2>b̄}, ϕ ≥ 0, ζ ≥ 0. (5)

The parameter ζ governs the curvature of the cost function. Three benchmark cases are of

interest: (i) ζ = 0: a fixed cost of violating the ceiling; (ii) ζ = 1: a piecewise–linear penalty

with marginal costs that increase discretely once the ceiling is exceeded; and (iii) ζ = 2: a

smooth quadratic penalty, differentiable at b2 = b̄ and thus suitable for characterizing the

interior tradeoff between incentives and distortions.

We proceed as follows. We first characterize the commitment and no-commitment

benchmarks. The cost in (5) is irrelevant under commitment and absent when ϕ = 0 (the

no-commitment case). We then analyze the intermediate-commitment economy for the

benchmark specifications ζ ∈ {0, 1, 2}. In these cases, when ϕ > 0, the prospect of paying (5)

disciplines period-2 borrowing and allows the period-1 government to move the allocation

toward the commitment benchmark.

Commitment. Under full commitment, the government can choose both b1 and b2 in

period 1 to maximize lifetime welfare, fully internalizing how total debt affects future

borrowing costs and repayment risk. Lifetime welfare is given by

V C
1 (b1, b2) = u(c1) + β u(c2) + β2 E[u(c3) | B]
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with ct = q(B)bt. Because the government internalizes the future price response q(B),

borrowing is disciplined across both bonds. In this three-period environment, commitment

at t = 1 is equivalent to full commitment: choosing b1 and b2 jointly fixes the entire path

of debt and precludes any subsequent reoptimization at t = 2. The first-order conditions

characterizing the commitment allocation are

u′(c1)(q(B) + b1 q
′(B)) + β

(
u′(c2)b2q

′(B) + β
∂

∂b1
E[u(c3) | B]

)
= 0, (6)

u′(c1) b1 q
′(B) + β

(
u′(c2)(q(B) + b2 q

′(B)) + β
∂

∂b2
E[u(c3) | B]

)
= 0. (7)

These conditions balance the marginal benefit of issuing an additional unit of debt at t = 1

or t = 2 with its marginal cost. The terms q(B) + btq
′(B) capture the direct effect of higher

borrowing on time-t resources: issuing one more unit of bt raises revenue through the bond

price q(B) but also lowers that price through q′(B), reducing the value of outstanding debt.

In the condition for b1, the additional term βu′(c2)b2q
′(B) reflects that increasing b1 also

changes the bond price at t = 2, thereby affecting period-2 consumption through its effect on

total debt B = b1+ b2. In the condition for b2, the term u′(c1)b1q
′(B) captures the symmetric

effect on the previously chosen b1: when the planner selects b2, the induced change in q(B)

alters the valuation of existing obligations. Under commitment the planner internalizes this

effect, whereas a period-2 government under discretion would ignore it, which is the source of

the familiar time-inconsistency problem.

Finally, the last terms, β2 ∂
∂bt

E[u(c3) | B], capture the discounted marginal cost of

increasing total obligations B, which lowers expected utility in period 3 through a higher

probability of default or a greater repayment burden.

The solution to equations (6) and (7) is a pair (bC1 , b
C
2 ), which must satisfy the following

equation obtained by dividing the two first-order conditions:

β
u′(c2)

u′(c1)
= 1. (8)

Condition (8) is the standard Euler equation for intertemporal allocation. It requires the

government to choose (bC1 , b
C
2 ) so that the discounted marginal utilities of consumption in

periods 1 and 2 are equalized. We can further simplify condition (8) to get the following

simple proportionality:

bC2 =
√

β bC1 ,

so the ratio between bC2 and bC1 is pinned down entirely by the discount parameter. Because
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√
β < 1, the commitment allocation features more bC1 than bC2 , reflecting the government’s

ability to internalize future fiscal discipline. Substituting this relationship into the planner’s

problem yields a closed-form expression for bC1 /ȳ, from which bC2 follows immediately via

the proportionality rule.4 The resulting debt levels are lower in both periods relative to

the no-commitment case and borrowing is tilted toward period 1, where its marginal utility

is highest, while the marginal cost of debt depends only on total exposure B. This choice

contrasts with the no-commitment benchmark, where the period-2 government overissues

debt at t = 2, generating higher overall borrowing.

No commitment. Without commitment, decisions are sequential. In period 2, the govern-

ment takes the inherited debt stock b1 as given and chooses b2 to maximize current and future

utility, since the government can’t commit to any previously announce borrowing issuances.

The problem at t = 2 is:

V NC
2 (b1) = max

b2

{
u(c2) + β E[u(c3) | B]

}
,

with c2 = q(B) b2. The first-order condition with respect to b2 is

u′(c2)(q(B) + b2 q
′(B)) = −β ∂

∂b2
E[u(c3) | B]. (9)

Condition (9) is mathematically analogous to (7) under commitment, except that the period-2

government takes b1 as predetermined. It equates the marginal benefit of issuing additional

debt to its marginal cost. The left-hand side captures the immediate gain at t = 2: an extra

unit of b2 increases current resources by q(B), but also lowers the bond price through q′(B),

which reduces the value of all outstanding short-term debt. The right-hand side reflects

the discounted marginal cost of higher total obligations B at t = 3, which worsen expected

utility through a higher likelihood or severity of default. Unlike under commitment, the

period-2 government treats b1 as predetermined and does not internalize how its borrowing

decision interacts with the earlier choice of b1; it optimally chooses b2 taking b1 as given,

which will lead to excessive b2 issuance relative to the commitment benchmark, as captured

by Proposition 1.

4The explicit solution is provided in Appendix A.3.
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Solving condition (9) yields the following closed-form policy function:

b†2(b1) =
ȳ

4β

[
−3 +

√
9 + 16β

(
1− b1

ȳ

)]
. (10)

The policy function b†2(b1) is decreasing in the inherited long-term debt b1: a larger stock

of outstanding obligations raises default risk and lowers the bond price, making additional

borrowing less attractive. It is decreasing in β, since a more patient government discounts the

future cost of repayment more heavily and therefore finds it optimal to issue less debt at t = 2.

Equation (10) thus provides a closed-form characterization of the period-2 overborrowing

motive.

At time 1, the government and the lenders anticipate that the time 2 government will

reoptimize according to (10) and chooses b1 to maximize

V NC
1 (b1) = u(c1) + βu(c2(b1)) + β2 E[u(c3) | B],

with c1 = q(B) b1, B = b1 + b†2(b1), and c2(b2) = q(B) b†2(b1). The first-order condition for b1

under no commitment is

u′(c1)
(
q(B) + b1 q

′(B)
(
1 + b†2

′(b1)
))

+ (11)

+ β

[
u′(c†2)

(
q(B) b†2

′(b1) + b†2(b1) q
′(B)

(
1 + b†2

′(b1)
))

+ β
∂

∂B
E[u(c3) | B]

(
1 + b†2

′(b1)
)]

= 0.

Condition (11) is a generalized Euler equation describing the rationale behind the optimal

choice of b1 when future governments reoptimize.5 As in the commitment case (6), the first

term captures the marginal benefit of raising resources at t = 1: issuing additional debt

expands current consumption by q(B) but depresses the bond price through q′(B) < 0,

lowering the value of all outstanding liabilities. The continuation value term inside the large

brackets reflects the discounted effect of higher debt on future utility at t = 2 and t = 3. The

key difference from commitment is the appearance of the blue terms involving b†2
′(b1), which

measure how an increase in b1 modifies the period-2 government’s optimal issuance policy.

Because the t = 1 government internalizes that its successor will adjust borrowing in response

to changes in inherited debt, its Euler equation contains an additional channel: the effect

of b1 on the future price and quantity of debt issued by the period-2 government. Under

commitment, this channel disappears—future choices are fixed—so the blue terms drop out

5We refer to (11) as a generalized Euler equation because it incorporates the strategic interaction between

the period-1 and period-2 governments through the derivative of the successor’s policy function, b†2
′(b1).
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and (6) reduces to the standard intertemporal condition balancing the marginal utility gain

from extra resources at t = 1 with the discounted marginal cost of higher promised repayment.

Thus, the no-commitment Euler equation differs from the commitment counterpart only

through the policy-response terms b†2
′(b1), which encode the strategic anticipations absent

under commitment.

Combining the period–2 condition (9) with the generalized Euler equation for b1 under

no commitment (10), we obtain the following generalized Euler equation:

β
u′(c2)

u′(c1)
= 1 + b1

q′(B)

q(B)

(
1 + b†2

′
(b1)
)
. (12)

This condition has the same structure as the commitment Euler equation (8), except for

the additional blue term. Under commitment, the discount factor between periods 1 and 2

satisfies βu′(c2)/u
′(c1) = 1, so the planner equalizes discounted marginal utilities across

the two pre-repayment dates. Under no commitment, the extra term in blue captures the

strategic bias : it reflects how an increase in b1 affects the successor’s borrowing choice b′2(b1)

and, through q′(B), the price of debt. The resulting condition (12) is an Euler equation

with an effective discount factor distorted by the strategic interaction between the period–1

and period–2 governments. Specifically, relative to commitment, the strategic term in blue

depresses the discount factor between periods 1 and 2: the government behaves as if it

effectively discounts period-2 marginal utility more heavily (an “excess impatience” induced

by the successor’s re-optimization). The size of the distortion depends on the bond-price

elasticity q′(B)/q(B) and on how aggressively the period-2 government adjusts its borrowing,

b†2
′
(b1). Since q′(B)/q(B) < 0 and 1 + b†2

′
(b1) > 0, the entire blue term is negative, so

the strategic bias always lowers the effective discount factor relative to the commitment

benchmark.

The solution to (9)-(11) yields a pair (bNC
1 , bNC

2 ) that differs systematically from the

commitment benchmark. Because the period-2 government places too little weight on the

future consequences of additional borrowing, it issues more debt than is dynamically efficient

under commitment, and the period-1 government—anticipating this behavior—adjusts its

own issuance accordingly. The resulting allocation features excessive total borrowing and an

intertemporal composition tilted toward period 2.
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Excessive Period-2 Borrowing Under No Commitment

Proposition 1. Fix β ∈ (0, 1) and ȳ > 0. Let (bC1 , b
C
2 ) be the optimal borrowing

choices under commitment at t = 1, and let (bNC
1 , bNC

2 ) be the equilibrium choices in

the no–commitment economy. Then borrowing undertaken at t = 2 – as a share of total

borrowing – is strictly higher without commitment:

bNC
2

bNC
1 + bNC

2

≥ bC2
bC1 + bC2

=

√
β

1 +
√
β
.

Proof. See Appendix A.2.

Proposition 1 formalizes this result by showing that the share of total borrowing undertaken

at t = 2 is strictly higher without commitment than under commitment. Further details are

provided in Appendix A.2.

Intermediate commitment with a fixed cost (ζ = 0). We retain the no-commitment

structure described above but introduce a borrowing ceiling b̄ in period 2 and a fixed cost ϕ ≥ 0

that applies whenever the ceiling is exceeded. The period-2 government then solves

V2(b1, b̄) = max
b2

{
u(c2)− ϕ1{b2>b̄} + β E[u(c3) | B]

}
.

Absent the penalty (ϕ = 0), the interior first-order condition yields the unconstrained best

response (10), identical to the t = 2 policy in the no-commitment case. Introducing the

ceiling with cost ϕ leads to a simple comparison: the government either (i) chooses the interior

point b†2(b1) if it yields higher value than respecting the cap, or (ii) stops at the ceiling b2 = b̄

and avoid paying the cost.

To evaluate this decision transparently, define the value function excluding the penalty

term:

f0(b2 | b1) = u(c2) + β E[u(c3) | B].

For any given (b1, b̄), the period-2 government chooses b2 according to

b2(b1, b̄) =


b†2(b1), if f0(b

†
2(b1) | b1)− ϕ > f0(b̄ | b1),

b̄, otherwise.

(13)

That is, the government either borrows freely up to its unconstrained optimum b†2(b1) or

13



stops at the ceiling b̄ if the expected utility gain from additional borrowing does not outweigh

the cost ϕ.

At time 1, the government anticipates that its successor will reoptimize according to (13)

and chooses b1 and b̄ to maximize

V1(b1, b̄) = u(c1) + β
(
u(c2(b1, b̄))− ϕ1{b2(b1,b̄)>b̄}

)
+ β2 E[u(c3) | B],

with c1 = q(B) b1, B = b1 + b2(b1, b̄), and c2(b2, b̄) = q(B) b2(b1, b̄).

The choice of the ceiling b̄ follows directly from the period-2 best response (13). For

any fixed b1, the ceiling affects equilibrium only if it is enforceable, meaning the period-2

government weakly prefers respecting the cap to deviating to its unconstrained optimum.

This requires the incentive constraint

f0
(
b†2(b1) | b1

)
− ϕ ≤ f0

(
b̄ | b1

)
.

Among all ceilings satisfying this condition, the period-1 government chooses the largest

enforceable value. The reason is that tighter ceilings reduce period-2 borrowing and therefore

depress c2 without providing any additional benefit once the incentive constraint is satisfied.

Consequently, when ϕ is small enough so the planner will use the ceiling (i.e., values of ϕ that

are too small to make the commitment allocation self-enforcing), the optimal b̄ lies exactly

on the indifference locus

f0
(
b†2(b1) | b1

)
− ϕ = f0

(
b̄ | b1

)
, (14)

which pins down b̄ uniquely as a function of b1. At such a ceiling, the period-2 government is

indifferent between deviating to b†2(b1) and respecting b̄, and the equilibrium debt at t = 2

satisfies b2(b1, b̄) = b̄. This ensures that period-2 borrowing is disciplined while imposing

the minimal distortion on the allocation. Equation (14) implies the existence of a cutoff

enforcement level ϕmin above which the commitment allocation (b1, b̄) = (bC1 , b
C
2 ) becomes

sustainable. The smallest cost that makes the ceiling self-enforcing at t = 2 is the value gap:

ϕmin = f0

(
b†2(b

C
1 )
∣∣∣ bC1 )− f0

(
bC2
∣∣ bC1 ) > 0. (15)

To characterize the optimal choice of b1 under intermediate commitment, differentiate

V1(b1, b̄) with respect to b1. Using c1 = q(B)b1, c2 = q(B)b̄(b1), and B = b1 + b̄(b1), and

letting b̄′(b1) =
db̄(b1)
db1

denote the policy-response term implied by the indifference condition,

14



the generalized Euler equation is

u′(c1)
(
q(B) + b1 q

′(B)
(
1 + b̄′(b1)

))
(16)

+ β

[
u′(c2)

(
q(B) b̄′(b1) + q′(B) b̄(b1)

(
1 + b̄′(b1)

))
+ β

∂

∂B
E[u(c3) | B]

(
1 + b̄′(b1)

)]
= 0.

Equation (16) has the same structure as the generalized Euler equation (11) under no

commitment. The only difference is the policy-response term: under no commitment the

relevant elasticity is b†2
′(b1), while under intermediate commitment the period–2 choice is

determined by the ceiling, b2(b1, b̄) = b̄(b1), so the elasticity becomes b̄′(b1). Substituting b̄(b1)

and b̄′(b1) for b
†
2(b1) and b†2

′(b1) transforms the no-commitment condition into (16).

The policy-response term b̄′(b1) is naturally shaped by how the optimal ceiling adjusts

when inherited debt changes. As seen in Figure 2, both b1 and the induced ceiling b̄ decline

with higher costs, and the slope of the intermediate commitment locus therefore governs

the magnitude of b̄′(b1). When the ceiling is tightly disciplined (high ϕ), small increases

in b1 require only small adjustments in b̄, so b̄′(b1) is close to zero; when the cost ϕ is low,

the ceiling must respond more strongly to preserve incentive compatibility, generating a

larger b̄′(b1). Overall, the discipline imposed by the ceiling makes b̄′(b1) generally smaller in

magnitude than the unconstrained policy-response term that arises under no commitment. A

detailed derivation is provided in Appendix A.4.

To summarize, when ϕ ≥ ϕmin the economy replicates the commitment allocation. When

ϕ < ϕmin, the optimal pair (b1, b̄) lies between the commitment and no-commitment bench-

marks, generating intermediate borrowing levels and maturities. Putting these two steps

together yields a simple, threshold characterization summarized by Proposition 2.
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Sustainable Allocations Under a Debt Ceiling

Proposition 2. Fix a cost ϕ ≥ 0. The solution to the intermediate-commitment

problem is a pair (b∗1, b
∗
2) such that:

1. If ϕ = 0, the unique equilibrium is the no-commitment allocation (b∗1, b
∗
2) =

(bNC
1 , bNC

2 ), given by (10) and (9).

2. If 0 < ϕ < ϕmin, the equilibrium is an intermediate-commitment allocation (b⋆1, b
⋆
2)

characterized by (14) and (16), with b⋆1 ∈ (bC1 , b
NC
1 ) and b⋆2 ∈ (bC2 , b

NC
2 ). The

planner sets b̄ = b⋆2.

3. If ϕ ≥ ϕmin, the planner sets b̄ = bC2 , and the economy sustains the commitment

allocation (b∗1, b
∗
2) = (bC1 , b

C
2 ), given by (6) and (7), as a self-enforcing outcome at

t = 2.

Proof. See Appendix A.4.

Intuitively, the ceiling mitigates the period-2 overborrowing motive. For low costs it

only partially binds, reducing—but not eliminating—the overborrowing bias. Once the cost

reaches ϕmin, setting b̄ = bC2 fully restores the commitment plan; any additional enforcement

beyond ϕmin is redundant.

Figure 2 illustrates how the sustainable debt levels (b∗1, b
∗
2) vary as a function of ϕ. The

blue line shows the equilibrium with intermediate commitment, approaching the red and

yellow benchmarks as enforcement weakens or strengthens. For ϕ = 0, the economy exhibits

the no-commitment outcome with excessive borrowing. As ϕ increases, the debt ceiling

tightens and gradually aligns incentives across periods. Once ϕ reaches the threshold ϕmin

(indicated by the vertical line and shaded region), the ceiling fully sustains the commitment

plan and further increases in ϕ have no additional effect.
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Figure 2: Optimal Debt Positions Under Varying Commitment Strength

Note. The figure plots optimal debt choices b1 and b2, as functions of the cost ϕ. The blue solid line represents
the case of intermediate commitment, while the red and yellow dashed lines correspond to the no-commitment
and full-commitment benchmarks, respectively. The blue star markers plot the endogenous ceiling. The
shaded gray region marks values of ϕ above the minimum threshold ϕmin required to sustain commitment.

Intermediate commitment with a piecewise–linear cost (ζ = 1). When ζ = 1,

violating the ceiling entails a constant marginal penalty ϕ for each unit borrowed above b̄.

Hence the deviation cost has a kink at b2 = b̄: the marginal cost is zero for b2 ≤ b̄ and jumps to

ϕ for b2 > b̄. This implies that, whenever the ceiling is relevant, the period–2 problem has no

interior optimum strictly above the ceiling. Intuitively, if b2 > b̄ were optimal, the government

could lower b2 slightly and save ϕ per unit while barely affecting continuation value, so an

optimum cannot lie in the violating region. As a result, the equilibrium choice is of bang–bang

form: either the government respects the ceiling exactly (b2 = b̄) when enforcement is strong

enough, or it ignores it and chooses the unconstrained optimum when enforcement is weak.

This kinked–marginal–cost logic explains why, in Figure 3, the endogenous ceiling binds under

ζ = 1 once ϕ exceeds the threshold required to deter deviations. Formally, for b2 > b̄ the

first–order condition includes the constant term −ϕ, so the objective is strictly concave but

the optimum either lies at the boundary b2 = b̄ or at the unconstrained solution in the region

b2 ≤ b̄.

Intermediate commitment with a quadratic cost (ζ = 2). This case yields a tractable

first–order condition for the period–2 government and therefore provides a useful contrast
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with the environments ζ = 0 and ζ = 1. Numerical results for both ζ = 1 and ζ = 2 are

presented in Figure 3, which illustrate the different ways in which ceilings shape borrowing

incentives.

Given (b1, b̄), the period–2 government chooses b2 to maximize

V2(b1, b̄) = max
b2

{
u(c2)− ϕ(b2 − b̄)21{b2>b̄} + β E[u(c3) | B]

}
,

with c2 = q(B)b2 and B = b1 + b2. Define

f0(b2 | b1) = u(c2) + β E[u(c3) | B].

For b2 ≤ b̄, the penalty is inactive and the first–order condition is identical to the no–commitment

case (9). For an interior optimum with b2 > b̄, differentiating the objective yields

∂

∂b2
f0(b2 | b1) − 2ϕ(b2 − b̄) = 0, b2 > b̄, (17)

where
∂

∂b2
f0(b2 | b1) = u′(c2)

(
q(B) + b2q

′(B)
)
+ β

∂

∂B
E[u(c3) | B].

Relative to the unconstrained best response b†2(b1) in (10), the quadratic penalty introduces a

smooth marginal cost 2ϕ(b2 − b̄) that grows linearly with the violation. Let bQ2 (b1, b̄) denote

the policy function solving the first-order condition (17). Because the quadratic penalty

is differentiable at b2 = b̄, the problem is smooth and admits a single interior optimality

condition.

Anticipating bQ2 (b1, b̄), the period–1 government chooses (b1, b̄) to maximize

V Q
1 (b1, b̄) = u(c1) + β

(
u(cQ2 )− ϕ(bQ2 − b̄)21{bQ2 >b̄}

)
+ β2 E[u(c3) | BQ],

with c1 = q(BQ)b1, c
Q
2 = q(BQ)bQ2 (b1, b̄), and BQ = b1+ bQ2 (b1, b̄). Differentiating with respect

to b1 yields the generalized Euler equation

0 = u′(c1)
(
q(BQ) + b1 q

′(BQ)
(
1 + bQ2

′(b1, b̄)
))

(18)

+ β

[
u′(cQ2 )

(
q(BQ) bQ2

′ + q′(BQ)bQ2
(
1 + bQ2

′))+ β
∂

∂B
E[u(c3) | BQ]

(
1 + bQ2

′)],
where bQ2

′ denotes ∂bQ2 /∂b1. Equation (18) has the identical structure to the no–commitment
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Euler equation (11), except that the policy–response elasticity b†2
′(b1) is replaced by the

ceiling–induced response bQ2
′(b1, b̄). As with the fixed–penalty case, the ceiling reduces the

sensitivity of period–2 issuance to inherited debt, thereby partially restoring the discipline

present under commitment.

To characterize the optimal ceiling, differentiate V Q
1 (b1, b̄) with respect to b̄. Because bQ2 solves

the period–2 problem, the envelope theorem applies to V2, and the derivative decomposes

into two terms:

∂V Q
1

∂b̄
= u′(c1) q

′(BQ) b1
∂bQ2
∂b̄

+ 2βϕ (bQ2 − b̄)1{bQ2 >b̄}.

The second term captures the direct effect of relaxing the ceiling on the penalty paid at t = 2,

while the first term reflects how the ceiling influences period–1 resources through its effect

on the equilibrium borrowing bQ2 and thus the bond price q(B). In order to characterize the

region in which the quadratic penalty is active, we focus on the region where bQ2 > b̄, so the

indicator 1{bQ2 >b̄} equals one throughout and can be dropped. Setting the derivative equal to

zero yields the optimality condition

u′(c1) q
′(BQ) b1

∂bQ2
∂b̄

+ 2βϕ (bQ2 − b̄) = 0. (19)

Equation (19) shows that, unlike the fixed–cost case ζ = 0, a quadratic penalty does not

imply bQ2 = b̄ in equilibrium. Relaxing the ceiling reduces the penalty but also increases bQ2 ,

which lowers the bond price q(B) and therefore depresses c1. The optimal ceiling balances

these two forces, generating an interior gap bQ2 − b̄ > 0. Figure 3 shows that under a

quadratic penalty (ζ = 2), the gap between b2 and b̄2 shrinks as ϕ increases, but vanishes

only asymptotically as ϕ→∞, at which point the allocation converges to the commitment

benchmark. By contrast, under a linear penalty (ζ = 1), commitment is restored at a finite

threshold ϕmin, similarly to the ζ = 0’s case.
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Figure 3: Optimal Period-2 Borrowing Under Linear and Quadratic Costs

Note. The figure plots optimal period-2 borrowing b2 and the associated borrowing ceiling b̄2 as functions of
the cost ϕ, under two functional forms: a piecewise-linear penalty (ζ = 1) and a quadratic penalty (ζ = 2).
The blue solid line shows optimal constrained borrowing, the blue star markers plot the endogenous ceiling,
and the red and yellow dashed lines denote the no-commitment and full-commitment benchmarks, respectively.
Increasing enforcement strength progressively disciplines short-term borrowing, with the shape and rate of
convergence depending on the curvature of the penalty function.

The behavior of breaches differs across the three cost specifications. Under the quadratic

cost, breaches naturally arise in equilibrium: the marginal cost of exceeding the ceiling

increases only gradually, so the period-2 government finds it optimal to violate the ceiling

whenever the marginal value of additional borrowing exceeds the incremental political or

institutional cost of doing so. By contrast, with a fixed cost (ζ = 0) or a linear cost (ζ = 1),

breaches do not occur in the three-period benchmark. Because there is no uncertainty at

period 2, the government never finds it worthwhile to incur a discrete political or institutional

cost to obtain additional resources—the value of “purchasing” state contingency simply never

materializes. In a stochastic environment, however, the same fixed or linear costs can generate

breaches, as adverse states make the marginal value of extra borrowing high enough to justify

paying the cost. Thus, the curvature of the cost governs how sharply ceilings deter violations,

while uncertainty governs whether violations ever occur.

These insights motivate our transition to the stochastic infinite-horizon model, where

uncertainty, long-term debt dynamics, and forward-announced ceilings interact to produce

richer patterns of borrowing, occasional breaches, and endogenous discipline across time.
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3 Model

We build on the canonical Eaton and Gersovitz (1981) framework of sovereign default,

incorporating long-term debt and an endogenous debt ceiling. The government chooses

both the next period’s level of debt and a self-imposed ceiling on future debt, beyond which

borrowing incurs a quadratic cost. These costs are only paid when the desired borrowing

exceeds the previously promised debt ceiling, which captures frictions such as institutional

constraints, political economy considerations, or additional market-imposed discipline from

legacy bondholders.

3.1 Environment

Time is discrete and infinite. In each period, the government observes the realization of

an exogenous endowment y ∈ Y, which follows a Markov process with known transition

probabilities. The government begins the period with outstanding debt B ∈ R+ and a debt

ceiling B̄ ∈ R+. The debt ceiling is a choice variable in repayment and represents the upper

bound above which new borrowing incurs additional costs.

3.2 Government and Lenders

The government chooses whether to repay or default. Let d ∈ {0, 1} be the default indicator,

where d = 1 denotes default. The government’s value function is:

V (y,B, B̄) = max
d∈{0,1}

(1− d)V R(y,B, B̄) + dV D(y), (20)

where V R is the value of repayment and V D is the value of default.

Repayment. If the government chooses to repay, it selects next period’s debt B′ ∈ B and

a new ceiling B̄′ ∈ B̄. Consumption c satisfies the resource constraint:

c+ (δ + (1− δ)z)B = y + q(y,B′, B̄′)[B′ − (1− δ)B]− Φ(B′, B̄)− ι(B′, B), (21)

where q(y,B′, B̄′) is the price of long-term debt, δ is the fraction of debt maturing each

period, z is the coupon, and the function ι(B′, B̄) captures debt issuance costs. The function

Φ(B′, B̄) captures the additional cost of borrowing beyond the ceiling:
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Φ(B′, B̄) =

0, if B′ ≤ B̄,

ϕ · (B′ − B̄)ζ , if B′ > B̄,
(22)

where ϕ ≥ 0 governs the severity of the penalty. The parameter ζ ≥ 0 governs how the

political and institutional cost of exceeding the ceiling scales with the size of the breach.

Consistent with Section 2, we consider two values for ζ. When ζ = 0, any deviation from the

ceiling triggers a single discrete cost ϕ, regardless of how large the breach is. This captures

environments where the key friction is a fixed political or procedural hurdle—for example,

reopening a fiscal law or bearing a reputational cost that arises once the ceiling is violated,

but does not depend on the amount of additional borrowing. In contrast, when ζ = 2, the

penalty is convex in the size of the breach, so larger violations become disproportionately more

costly. This specification embodies the idea that political resistance, legislative bargaining

frictions, or reputational losses intensify with the magnitude of the deviation. Although these

two forces may interact in practice, we consider them separately for clarity, allowing us to

isolate how discrete versus convex costs affect the credibility and effectiveness of debt-ceiling

announcements.

The government’s recursive problem in repayment is thus:

V R(y,B, B̄) = max
c,B′,B̄′

u(c) + βEy′
[
V (y′, B′, B̄′)

]
, (23)

subject to the implementability constraint above.

Default. In the event of default, the country is excluded from financial markets and receives

autarky consumption ϱ(y). Re-entry occurs with probability θ ∈ (0, 1), in which case the

country returns with zero debt and the maximal allowable ceiling B̄max. The default value

function is:

V D(y) = u(ϱ(y)) + βEy′
[
θV (y′, 0, B̄max) + (1− θ)V D(y′)

]
. (24)

Lenders and bond pricing. There is a continuum of risk–neutral international lenders

that discount at the constant gross rate R = 1 + r. They are competitive, so in equilibrium

the bond price equals the expected discounted payoff per unit of debt. A bond issued at

(y,B′, B̄′) promises, if the government repays next period, a coupon z and the possibility of
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reselling the remaining (1− δ) fraction of the bond. Thus the equilibrium bond price satisfies

q(y,B′, B̄′) =
1

1 + r
Ey′|y

[(
1−d(y′, B′, B̄′)

)(
δ+(1−δ)

(
z + q

(
y′, B′′(y′, B′, B̄′), B̄′′(y′, B′, B̄′)

) ))]
,

(25)

where d(y′, B′, B̄′) ∈ {0, 1} is the default decision of the next-period government in state

(y′, B′, B̄′), and B′′(y′, B′, B̄′) and B̄′′(y′, B′, B̄′) denote its optimal choices of next-period

debt and ceiling. If default occurs (d = 1), lenders receive zero, so the payoff in (25) is zero

in those states. The price schedule q(·) is therefore determined jointly with the government’s

policy functions in a recursive Markov-perfect equilibrium.

3.3 Calibration

We follow Chatterjee and Eyigungor (2012) in parameterizing preferences, the stochastic

endowment process, and the structure of long-term debt. The model is calibrated at a

quarterly frequency. The government discounts the future at rate β, households have CRRA

utility with coefficient σ = 2, and international lenders discount at the risk-free rate r = 0.01.6

Long-term bonds mature geometrically at rate δ = 0.05 per quarter and pay coupon z = 0.03.

This implies an average maturity of 1/δ = 20 quarters, or five years. Upon default, the

economy re-enters financial markets with probability θ = 0.0385 each period.

Endowment process. Output follows an AR(1) process,

log yt = ρ log yt−1 + εt, εt ∼ N (0, σε2),

with persistence ρ = 0.9485 and innovation standard deviation σε = 0.0271, identical to the

estimates in Chatterjee and Eyigungor (2012).

Default cost function. Following Chatterjee and Eyigungor (2012), the consumption loss

in default is given by

ϱ(y) = y −max{0, d0y + d1y
2},

where the coefficients (d0, d1) determine the magnitude and curvature of the output cost. As

discussed below, these parameters are internally calibrated to match key external moments

of the Argentine data.

6In line with the sovereign default literature, we allow for r > 1/β. This wedge captures political myopia,
limited commitment, or unmodeled sovereign risks and helps generating realistic debt levels and spreads.
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Solution method and issuance costs. Unlike Chatterjee and Eyigungor (2012), we

solve the model using the extreme-value shock framework of Dvorkin et al. (2021), which

yields smooth policy functions and improves convergence. The correlation and variance of

the extreme value shocks are set to p = 0.37 and v = 6.8 × 10−3. Because this solution

method alters the shape of policy rules relative to the original discrete-choice formulation, we

recalibrate the three internally chosen parameters. A detailed description of the computational

strategy is reported in Appendix B.

Following Dvorkin et al. (2021), we incorporate debt issuance (adjustment) costs to

discipline high-frequency swings in long-term debt. Absent such costs, long-maturity sovereign

debt models can generate implausibly large one-period changes in issuance, often followed by

immediate default. We specify the issuance cost as

ι(B′, B) ≡ ι1

(
exp

(
ι2|B′ −B|

)
− 1
)
,

and set ι1 = 0.00005 and ι2 = 28, as in Dvorkin et al. (2021). This parametrization implies a

small marginal cost for routine issuance while making large, discrete adjustments increasingly

expensive, helping the model match the smooth debt-accumulation dynamics observed in the

data.

Internally calibrated parameters. The parameters β, d0, and d1 are selected to match

three targeted moments from the Argentine data: the mean debt-to-output ratio, the mean

sovereign spread, and the volatility of spreads. Table 1 reports the targets, model moments,

and corresponding parameter values.

Table 1: Targeted Moments and Corresponding Parameters

Moment Model Data Parameter Value

Debt-to Y ratio .71 .70 β 0.941

Mean Spread .0752 .0815 d0 0.030

Volatility of the Spread .0408 .0443 d1 0.431

Note: The table reports the internally calibrated parameters and their corresponding targeted moments.

In what follows, we introduce an endogenous ceiling and study its implications under two

alternative cost structures for breaching it: a fixed penalty (ζ = 0) and a convex quadratic

penalty (ζ = 2). To make the mechanism as transparent as possible, Subsection 3.4 sets

ϕ = 0.40, a deliberately large value that renders the ceiling nearly binding and isolates
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the commitment channel; this choice is purely illustrative and not meant as a quantitative

benchmark. We then turn to the quantitative analysis in Subsection 3.5, where we consider

the full range ϕ ∈ [0, 0.4] under both cost specifications. Within this range, we further

discipline ϕ using the spread moments in the data: for each ζ ∈ {0, 2} we back out the

value of ϕ that reproduces the empirical decline in average sovereign spreads associated with

debt-rule adoption, and use it to quantify the implied per-breach versus ergodic violation

costs and the resulting consumption-equivalent welfare gains.

3.4 The Role of the Debt Ceiling: Commitment vs Flexibility

In our benchmark with ϕ = 0 (blue line in Figure 4), bond prices are determined only by

borrowing choices and the exogenous income shock.7 We then introduce a debt ceiling by

setting ϕ = 0.4, which activates the endogenous penalty Φ(B′, B̄) when borrowing exceeds

the self-imposed ceiling. The debt ceiling modifies equilibrium outcomes by altering the

government’s intertemporal incentives.

The underlying mechanism hinges on a trade-off between commitment and fiscal flexibility.

On the one hand, by choosing and maintaining a ceiling on future borrowing, the government

partially commits not to excessively dilute outstanding debt. This mitigates the classic “debt

dilution” problem in Eaton and Gersovitz (1981)-type models with long-term debt: when the

government issues additional debt today, it lowers the value of legacy bonds tomorrow by

raising the probability of default. Anticipating this, investors demand higher yields, which

depresses bond prices (Hatchondo and Martinez, 2009; Chatterjee and Eyigungor, 2012).

Promising a credible ceiling can reduce this incentive, raise bond prices, and ultimately lower

borrowing costs. On the other hand, the same ceiling constrains the government’s ability to

smooth consumption and respond to adverse shocks by issuing additional debt. In tight fiscal

states, this restriction can make default more attractive, increasing the risk of repayment

failure.

The net effect of promising a “reasonable” value of the next period’s debt ceiling thus

reflects the balance of these two forces: lower interest rates in the current period at the cost

of more limited borrowing capacity in the next period. Figure 4 illustrates this mechanism.

7If borrowing above the debt ceiling is costless, any debt ceiling announcement is a non-informative signal
to future bondholders and as a result the model collapses exactly into the setup of Chatterjee and Eyigungor
(2012).
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Figure 4: Debt Ceilings, Bond Prices, and Cost Specifications
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Note: Each panel plots the equilibrium annualized spread as a function of the next-period debt ceiling
announcement. In both cases, moderate ceilings raise bond prices and lower credit spreads by mitigating debt
dilution, whereas excessively tight ceilings increase default risk, thereby reducing prices and widening spreads.
Panel a assumes a fixed cost of breaching the ceiling (ζ = 0), while Panel b assumes a convex quadratic cost
(ζ = 2), which makes larger violations disproportionately more costly. Solid blue lines correspond to the
model with a high debt-ceiling penalty (ϕ = 0.40), while the dashed red lines refer to the costless-ceiling case
(ϕ = 0).

The x-axis in Figure 4 reports the level of the promised next-period debt ceiling B̄′, while

the y-axis shows the annualized credit spreads which are computed as(
1 +

δ + (1− δ)z

q(y,B′, B̄′)
− δ

)4

− (1 + r)4,

corresponding to a fixed level of next-period debt (B′, dashed vertical line). The red dashed

line depicts the bond price in the benchmark model without ceiling frictions (ϕ = 0). The

blue continuous line shows the price in our model where the debt ceiling cost is ϕ = 0.4. Panel

a uses a fixed breach cost (ζ = 0) and Panel b uses a proportional quadratic cost (ζ = 2).

For a wide range of values of B̄′ around and moderately below the fixed next-period debt,

the announced ceiling raises bond prices and lower credit spreads relative to the benchmark

without ceiling costs. In this region, the ceiling mitigates debt dilution and lowers borrowing

costs. When the ceiling becomes extremely tight, however—well below any level consistent

with rolling over existing debt—bond prices fall sharply and credit spreads increase. Very

small ceilings imply that the government would almost surely need to violate the ceiling in

adverse states, which raises default risk and depresses prices. Under the fixed-cost specification

(Panel a), this shows up as a low, flat segment: once the ceiling is tight enough to make

a breach nearly certain, the discrete penalty leads lenders to price in a high probability of

default. Under the quadratic specification (Panel b), the effect is even more pronounced.
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Because large violations become disproportionately costly, very tight ceilings generate sharply

higher default risk and a steep collapse in bond prices. In both cases, excessively low ceilings

are counterproductive: instead of reinforcing commitment, they undermine it by making

future policy too inflexible to absorb shocks.

In this latter case, the prospect of being unable to respond to future shocks raises the

likelihood of default, as shown in Figure 5. The associated increase in default risk leads to

higher yields and lower bond prices, consistent with Figure 4. Figure 5 also shows that the

default region is larger under fixed costs, since any ceiling breach triggers a discrete penalty

and makes repayment unattractive over a broad set of states. By contrast, bond prices fall

more sharply under the quadratic specification when ceilings are extremely tight: even if

the government continues to repay in many states, lenders price in the possibility of large

violations, which become disproportionately costly and raise the ex-ante default probability.

Hence Figures 4 and 5 speak to different margins—ex-ante pricing versus the government’s

realized default decisions—and together highlight how overly tight ceilings can undermine,

rather than reinforce, policy credibility.

Finally, the non-monotonicity reported in Figure 5 highlights a central result: promising

reasonable austerity can improve credit conditions, while excessive austerity can backfire by

undermining repayment incentives. These considerations suggest that the adoption of a debt

ceiling can generate welfare gains. By alleviating debt dilution without excessively restricting

fiscal flexibility, a moderate debt ceiling can improve the trade-off faced by the government,

enabling it to borrow at lower spreads while preserving enough space to respond to adverse

shocks. As we show in Subsection 3.5, this mechanism can raise ex-ante expected utility

relative to both the no-ceiling benchmark and overly rigid fiscal rules.
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Figure 5: Tight Ceilings Can Trigger Default Under Alternative Cost Structures

(a) Fixed cost (ζ = 0), baseline ϕ = 0 (b) Fixed cost (ζ = 0), ϕ = 0.4

(c) Quadratic cost (ζ = 2), baseline ϕ = 0 (d) Quadratic cost (ζ = 2), ϕ = 0.4

Note: Each panel shows the default region in the space of current debt B and current debt ceiling B̄. Tight
ceilings can trigger default by weakening repayment incentives. Increasing ϕ from 0 to 0.4 shifts the economy
toward higher default risk when the ceiling binds at high debt levels. Fixed costs (ζ = 0) create sharper
threshold effects, whereas quadratic costs (ζ = 2) generate smoother distortions in the default boundary.

Finally, we analyze the policy functions for the debt ceiling itself. Figure 6 shows how

borrowing and debt-ceiling choices vary with the level of current debt (x-axis), holding

the endowment and the inherited ceiling—marked by the vertical dashed line—fixed. In

Panel b, which assumes a quadratic breaching cost, the government’s adjustment behavior

is considerably smoother than under the fixed-cost specification. For current debt levels

below the ceiling, borrowing is only mildly disciplined and both next-period debt and the

newly announced ceiling move gradually with the state. As current debt approaches and

exceeds the ceiling, the marginal cost of violating it rises, keeping next-period debt (the red

line) below the unconstrained benchmark (the yellow line) and inducing the government to

revise the ceiling (the blue line) cautiously. Unlike the discrete jump observed under the
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fixed-cost case in Panel a, the quadratic specification produces a continuous response: the

ceiling and borrowing choices adjust smoothly, with larger breaches becoming progressively

more expensive. Panel a indicates that the government finds it optimal to pay the breaching

cost only when current debt lies well above the inherited ceiling, at which point it adjusts

the announced ceiling upward more decisively.

Figure 6: Debt Ceilings and Borrowing choices

(a) Fixed cost (ζ = 0) (b) Quadratic cost (ζ = 2)

Note: Each panel plots equilibrium borrowing and debt-ceiling choices as a function of current debt, holding
the endowment and the current period ceiling fixed. In both cases, borrowing is partially constrained by the
existing ceiling, while future ceilings are chosen slightly above next-period debt. The plots are generated for a
high-endowment state in which default risk is nil. Panel a assumes a fixed cost of breaching the ceiling (ζ = 0),
whereas Panel b assumes a convex quadratic cost (ζ = 2). Dashed red and solid blue lines correspond to the
model with a high debt-ceiling penalty (ϕ = 0.40), while the dashed yellow lines refer to the costless-ceiling
case (ϕ = 0).

3.5 Quantitative Implications of Endogenous Debt Ceilings

We now quantify the real and asset-pricing implications of introducing an endogenous

debt ceiling. We compute the lifetime utility of a patient social planner with discount

factor βSP = 1
1+r

under alternative enforcement strengths ϕ, holding the initial state fixed

at (y0, B0). The planner evaluates welfare under the actual equilibrium behavior of the

(impatient) government—that is, taking as given the policy rules Dϕ
G, B

′ϕ
G , and B̄

′ϕ
G induced

by a given ϕ—and discounting forward:

V SP (y0, B0 | ϕ) =
∞∑
t=0

u
[
C
(
Dϕ

G(t),B
′ϕ
G (t), B̄

′ϕ
G (t)

)]
(1 + r)t

. (26)
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We report consumption-equivalent welfare gains relative to the benchmark economy without

ceiling frictions (ϕ = 0). Let λ(ϕ) denote the constant consumption compensation such that

V SP (y0, B0 | ϕ) =
∞∑
t=0

u[(1 + λ(ϕ)) c0t ]

(1 + r)t
,

where {c0t} is the consumption path implied by the ϕ = 0 economy starting from the same

initial state.

Figure 7 plots λ(ϕ) for alternative breach-cost curvatures ζ ∈ {0, 2}. Increasing ϕ

strengthens the credibility of the announced ceiling by raising the marginal cost of issuing

debt above the inherited bound. As a result, higher ϕ progressively disciplines expected

future issuance and reduces anticipated debt dilution, improving bond prices today. At

the same time, stronger enforcement tightens fiscal flexibility in adverse states and can

increase the value of default in a subset of states. The net welfare effect therefore reflects the

equilibrium trade-off between enhanced commitment (lower expected dilution and borrowing

costs) and reduced flexibility. In both specifications, welfare gains rise with enforcement and

exhibit diminishing returns: most of the welfare improvements are achieved at relatively

modest values of ϕ, while further increases primarily deliver marginal gains as the economy

approaches the one-period-ahead commitment allocation.

Figure 7: Welfare Gains from Debt Ceilings Under Alternative Cost Structures
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Note: Each panel reports consumption-equivalent welfare gains (relative to ϕ = 0) from introducing an
endogenous debt ceiling as a function of the enforcement parameter ϕ. Moderate values of ϕ raise welfare by
inducing credible, but not excessively restrictive, ceilings. Panel a assumes a fixed per-breach cost (ζ = 0),
while panel b assumes a convex quadratic cost (ζ = 2), which penalizes larger violations more heavily.

To connect the welfare results to the empirical spread facts, we also report long-run

(ergodic) implications for borrowing and bond pricing. Table 2 compares the baseline
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economy without a ceiling to economies with an endogenous ceiling under both ζ = 0 and

ζ = 2.

We discipline ϕ using the extended Cruces–Trebesch dataset and the cross-country

regressions reported in the introduction. Appendix Table 3 shows that the fiscal-rule indicator

enters with a negative and statistically significant coefficient across specifications, implying

that countries with a fiscal rule exhibit EMBIG spreads roughly 40–60 basis points lower

than otherwise similar economies. Because these estimates summarize the cross-country

association between debt-rule frameworks and borrowing costs—rather than the effect of a

literal statutory debt ceiling or an Argentina-specific reform—we use them as guidance to back

out the parameter ϕ (and its implied resource costs) required to generate a comparable decline

in spreads in the model, and then assess the associated welfare gains in an Argentina-like

economy.

Specifically, we calibrate ϕ separately for each curvature ζ ∈ {0, 2} to match the empirical

reduction in average sovereign spreads associated with fiscal rules. For each ζ, we choose a

single parameter ϕ so that the model-implied ergodic mean spread falls by approximately

50 basis points relative to the no-ceiling benchmark. This discipline yields ϕ = 0.004 in the

fixed-cost economy and ϕ = 0.012 in the quadratic-cost economy (columns labeled “Calibrated

Cost”).

Because we adjust only one parameter in each economy, we do not target spread volatility

directly. Moreover, volatility is measured differently in the model and the data. The model is

calibrated at a quarterly frequency, so the volatility moment reported in Table 2 reflects the

dispersion of (quarterly) spreads generated by the quarterly model (reported in annualized

units). In the data, the volatility fact reported in Appendix Table 4 is based on higher-

frequency information (daily returns aggregated to monthly volatility). Nevertheless, the

model delivers the same qualitative implication as the data: introducing a credible ceiling

lowers both the level and the volatility of spreads.

Two findings stand out. First, consistent with the mechanism, introducing an enforceable

ceiling has only a modest effect on average indebtedness: mean debt-to-output falls from

0.71 to about 0.70 across specifications. Second, the implications for pricing are sizable.

Under the calibrated costs, mean spreads decline by roughly 55–60 basis points, and spread

volatility falls as well. Thus, the ceiling primarily operates by improving expected repayment

incentives—mitigating perceived dilution risk—rather than by materially compressing average

borrowing, which is why the largest quantitative effects appear in sovereign pricing moments.

Finally, it is useful to distinguish between the per-breach cost of deviating from the

ceiling and the average cost paid in equilibrium. In the fixed-cost economy (ζ = 0), ϕ is
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Table 2: Effect of the Debt Ceiling on Debt and Spreads

Calibrated Cost High Cost
No Ceiling ϕ = .004 ϕ = .012 ϕ = .4

Moment Baseline ζ = 0 ζ = 2 ζ = 0 ζ = 2

Debt-to-Y ratio .71 .701 .703 .698 .699

Mean Spread .0752 .0694 .0696 .0658 .0670

Volatility of the Spread .0408 .0375 .0376 .0355 .0369

Ceilings-costs-paid-to-Y ratio – 8.0e-4 4.2e-4 7.3e-3 1.6e-4

Note: The first column reports ergodic moments in the baseline model without a ceiling. Columns 3–4
report ceiling economies in which ϕ is calibrated separately for each ζ to match the empirical reduction in
average spreads associated with fiscal rules (roughly 50 bps). Columns 5–6 report moments under a higher
enforcement level ϕ = 0.4. “Ceilings-costs-paid-to-Y ratio” is the unconditional ergodic average share of
output spent on ceiling-violation costs.

directly interpretable as a one-time output cost incurred whenever the ceiling is breached.

For instance, ϕ = 0.004 corresponds to a one-time cost of 0.4% of output in any period in

which the government borrows above the inherited ceiling. Yet the ergodic cost actually paid

is much smaller: Table 2 shows an unconditional average cost of 8.0 × 10−4, i.e. 0.08% of

output, because breaches occur only in a subset of states. In the quadratic-cost economy

(ζ = 2), the per-breach cost depends on the magnitude of the violation, so unconditional

costs can be even smaller for a given impact on incentives; indeed, the calibrated quadratic

specification delivers an average cost of 4.2× 10−4 (0.042% of output). This wedge between

enforcement “on paper” (the per-breach penalty) and enforcement “in practice” (the average

cost actually paid) is central for interpretation: relatively modest expected resource costs can

nonetheless sustain sizable improvements in credibility, borrowing incentives, and welfare.8

Taken together, Figure 7 and Table 2 show that sizable welfare and pricing gains do not

require extreme commitment. Credible enforcement—implemented through institutional,

political, or procedural costs of revising self-imposed ceilings—can substantially reduce

dilution risk and sovereign spreads while leaving average debt largely unchanged, with most

of the quantitative benefits realized at moderate enforcement levels.

8This distinction is also evident in the last two columns: when the per-breach penalty is raised substantially
(ϕ = 0.4), breaches are deterred enough that the average costs actually paid decline in both cases, despite the
higher penalty.
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4 Conclusion

This paper has shown that debt-ceiling announcements can function as endogenous com-

mitment devices through which governments discipline their future selves. Embedding this

mechanism in a sovereign-default framework with long-term debt reveals that self-imposed

debt ceilings—when costly to revise—provide a tractable form of intermediate commitment:

they curb debt dilution by partially constraining future borrowing, yet remain flexible enough

to accommodate adverse shocks.

A three-period benchmark isolates the logic of the mechanism. Without commitment,

the government overborrows because it fails to internalize how additional issuance dilutes

legacy bondholders and raises default risk. Announcing a ceiling backed by a deviation

cost counteracts this bias. For low costs, the ceiling binds only partially and yields an

allocation strictly between the no-commitment and full-commitment benchmarks. Once

the cost reaches a simple threshold, the ceiling fully sustains the commitment allocation.

These results formally characterize the conditions under which an incumbent can induce its

preferred allocation through an appropriately chosen ceiling that its successor optimally finds

it costly to violate.

Extending the mechanism to a stochastic infinite-horizon model shows that the same logic

operates in a more realistic environment with long-term debt. Calibrated to Argentina, the

model predicts that governments voluntarily adopt “reasonable” debt ceilings: ones that are

sufficiently tight to mitigate dilution and lower spreads, but not so tight as to unduly restrict

fiscal flexibility. The resulting ceilings reduce borrowing costs and raise welfare relative to an

economy without such rules.

Overall, our results show that fiscal frameworks function best when they combine discipline

with flexibility. Self-imposed debt ceilings that are costly but can be revised can deliver

meaningful commitment gains even without external enforcement. A natural avenue for future

research is to examine the extent to which governments can control how tightly fiscal rules

are enforced. We analyze these questions in a companion paper that incorporates political

economy constraints that micro-found enforcement costs and escape clauses. This suggests

that fiscal institutions that shape how governments announce, update, and justify borrowing

limits play a larger role in debt sustainability than previously recognized.
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A Mathematical Details of the Three-Period Model

This appendix provides derivations for the three-period benchmark in Section 2. We first

derive expected utility at t = 3 and the pricing function, then characterize the no-commitment

and commitment allocations, and finally analyze the intermediate-commitment case with a

debt ceiling.

A.1 Environment and Default

Time is t ∈ {1, 2, 3}. The government receives endowments y1 = y2 = 0 and y3 = ȳ > 0.

Preferences are CRRA with risk aversion σ = 2:

u(c) = −1

c
, β ∈ (0, 1].

All debt matures at t = 3. Let b1 denote face value issued at t = 1 and b2 face value issued at

t = 2, so total obligations at t = 3 are

B = b1 + b2.

Following the main text, define the repayment slack

x ≡ ȳ −B

ȳ
∈ (0, 1], so that B = ȳ(1− x).

Default cost at t = 3 is governed by a Pareto random variable θ ∼ Pareto(α) on [1,∞) with

shape parameter α = 1
2
. If the government repays, it consumes c3 = ȳ−B = ȳx. If it defaults,

it consumes c3 = ȳ/θ. Default occurs whenever

ȳ

θ
≥ ȳ −B ⇐⇒ θ ≤ ȳ

ȳ −B
=

1

x
.

With risk-neutral lenders and a unit gross risk-free rate, the bond price equals the

probability of repayment. Using the CDF of the Pareto distribution,

q(B) = Pr(θ > 1/x) = xα =
√
x.
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Expected utility at t = 3 conditional on B is

E[u(c3) | B] = Pr(θ > 1/x)u(ȳ −B) +

∫ 1/x

1

u
( ȳ
θ

)
α θ−(α+1) dθ

= x1/2
(
− 1

ȳx

)
−
∫ 1/x

1

1

ȳ

1

2
θ−1/2 dθ

= −x1/2

xȳ
− 1

ȳ

[
θ1/2

]1/x
1

= −x1/2

xȳ
− 1

ȳ

(
x−1/2 − 1

)
=

1

ȳ

(
1− 2x−1/2

)
,

which is equation (4) in the main text.

A.2 No Commitment

We first solve for the period-2 best response b†2(b1) taking b1 as given, and then characterize

the period-1 choice bNC
1 .

Period-2 Problem

Given b1, total debt is B = b1 + b2, the slack is x = 1− (b1 + b2)/ȳ, and the bond price is

q(B) =
√
x. Period-2 consumption is

c2 = q(B) b2 =
√
x b2.

The period-2 government chooses b2 to maximize

V NC
2 (b1) = max

b2

{
u(c2) + β E[u(c3) | B]

}
= max

b2

{
− 1√

x b2
+

β

ȳ

(
1− 2x−1/2

)}
,

where x = 1− (b1 + b2)/ȳ and dx/db2 = −1/ȳ.

The first-order condition (FOC) is

∂V NC
2

∂b2
=

x−1/2

b22
− 1

2ȳ

x−3/2

b2
− β

ȳ2
x−3/2 = 0.
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Multiplying by x3/2ȳ2b22 and using x = 1− (b1 + b2)/ȳ, this simplifies to

− b2
2ȳ

+ x− βb22
ȳ2

= 0.

Substituting x = 1− (b1 + b2)/ȳ and rearranging yields the quadratic in b2/ȳ:

β
(

b2
ȳ

)2
+ 3

2

(
b2
ȳ

)
+
(b1
ȳ
− 1
)
= 0. (27)

We take the positive root and define

b†2(b1) =
ȳ

4β

[
−3 +

√
9 + 16β

(
1− b1

ȳ

)]
, (28)

which coincides with equation (10) in the main text.

Using (27), the associated slack can be written as

x†(b1) = 1− b1 + b†2(b1)

ȳ
= β

(
b†2(b1)

ȳ

)2
+ 1

2

(
b†2(b1)

ȳ

)
. (29)

Differentiating (28) with respect to b1 gives

db†2
db1

(b1) = −
2√

9 + 16β
(
1− b1

ȳ

) = − 2

4β
b†2(b1)

ȳ
+ 3

. (30)

From (29) we also obtain

dx†

db1
(b1) = −

1 +
db†2
db1

(b1)

ȳ
. (31)

The value of following the optimal no-commitment policy at t = 2 is

V NC
2 (b1) = −

(
x†(b1)

)−1/2

b†2(b1)
+

β

ȳ

(
1− 2

(
x†(b1)

)−1/2
)
. (32)

Differentiating (32) and using (30)–(31) yields

dV NC
2

db1
(b1) = −

(
1 +

db†2
db1

)(x†)−3/2

ȳ

[ 1

2b†2
+

β

ȳ

]
+ (x†)−1/2

db†2
db1

(b†2)
2
, (33)

where x† = x†(b1) and b†2 = b†2(b1).
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Period-1 Problem

Anticipating the period-2 policy b†2(b1), the period-1 government solves

V NC
1 (b1) = u(c1) + βV NC

2 (b1) = −
1√

x†(b1) b1
+ βV NC

2 (b1),

where x†(b1) and V NC
2 (b1) are given in (29) and (32). The FOC is

0 =
dV NC

1

db1
(b1)

= −
[

d

db1

(
(x†)−1/2

)
· 1
b1

+ x†−1/2 · d

db1

( 1

b1

)]
+ β

dV NC
2

db1
(b1).

Using

d

db1

(
(x†)−1/2

)
=

1 +
db†2
db1

2ȳ
(x†)−3/2,

d

db1

( 1

b1

)
= − 1

b21
,

and substituting (33), after simplification we obtain

0 = (x†)

[
1− β

(
b1
ȳ

)2
(

b†2(b1)

ȳ

)2
]
− 1

2

(b1
ȳ

)4β( b†2(b1)
ȳ

)
+ 1

4β
( b†2(b1)

ȳ

)
+ 3

. (34)

(34) together with (28) characterizes the no-commitment allocation (bNC
1 , bNC

2 ) = (b∗1, b
∗
2) in

the main text.

Proof of Proposition 1

We now prove the maturity comparison in Proposition 1, reproduced here for convenience:

Fix β ∈ (0, 1) and ȳ > 0. Let (bC1 , b
C
2 ) be the commitment allocation and (bNC

1 , bNC
2 ) the

no-commitment allocation. Then

bNC
2

bNC
1 + bNC

2

>
bC2

bC1 + bC2
=

√
β

1 +
√
β
.

Under commitment, the FOCs (derived below) imply bC2 /b
C
1 =

√
β. Suppose, for a

contradiction, that the no-commitment allocation were relatively more front-loaded:

bC2
bC1

=
√
β >

bNC
2

bNC
1

.
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Equivalently,

β >
(

bNC
2

bNC
1

)2
=

( bNC
2

ȳ

bNC
1

ȳ

)2

=⇒ 1− β

( bNC
1

ȳ

)2( bNC
2

ȳ

)2 < 0.

But at (bNC
1 , bNC

2 ), the no-commitment FOC (34) requires

x†(bNC
1 )

[
1− β

(
bNC
1

ȳ

)2
(

bNC
2

ȳ

)2
]
− 1

2

(bNC
1

ȳ

)4β( bNC
2

ȳ

)
+ 1

4β
( bNC

2

ȳ

)
+ 3

= 0.

Since x†(bNC
1 ) > 0 and the second term is nonnegative, the bracketed expression must be

nonnegative, contradicting the inequality above. Hence

bNC
2

bNC
1

≥
√

β,

which in turn implies
bNC
2

bNC
1 + bNC

2

≥
√
β

1 +
√
β
=

bC2
bC1 + bC2

.

A.3 Commitment Problem

Under commitment, the period-1 government chooses both b1 and b2, taking into account

their joint effect on prices and default risk.

Using B = b1 + b2, x = 1− B/ȳ, and q(B) =
√
x, period-1 and period-2 consumptions

are c1 = q(B)b1 and c2 = q(B)b2, and the lifetime objective is

V C
1 (b1, b2) = −

1

q(B) b1
− β

q(B) b2
+ β2 E[u(c3) | B], (35)

with E[u(c3) | B] given by (4).

Since x = (ȳ −B)/ȳ and q =
√
x,

q′(B) =
dq

dB
=

dq

dx

dx

dB
=

1

2
√
x

(
− 1

ȳ

)
= − 1

2ȳ
√
x
,

and
d

dB
E[u(c3) | B] =

d

dB

[
1

ȳ

(
1− 2x−1/2

)]
= − 1

ȳ2x3/2
.
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Differentiating (35) with respect to b1 and b2, and using ∂B/∂b1 = ∂B/∂b2 = 1, we

obtain:

FOC with respect to b1.

∂V C
1

∂b1
=

q + b1q
′

q2b21
+ β

q′

q2b2
+ β2 d

dB
E[u(c3) | B] = 0. (36)

FOC with respect to b2.

∂V C
1

∂b2
=

q′

q2b1
+ β

q + b2q
′

q2b22
+ β2 d

dB
E[u(c3) | B] = 0. (37)

Subtracting (37) from (36) eliminates the common term β2 d
dB

E[u(c3) | B]:

0 =
q + b1q

′

q2b21
+ β

q′

q2b2
− q′

q2b1
− β

q + b2q
′

q2b22

=
qb22 − βqb21
q2b21b

2
2

,

which implies
bC2
bC1

=
√
β. (38)

This is the maturity ratio reported in the main text.

Using bC2 =
√
β bC1 and BC = bC1 + bC2 , we have

xC = 1− BC

ȳ
= 1− bC1

ȳ
(1 +

√
β), qC =

√
xC .

Substituting these expressions into (36) (or equivalently (37)) and simplifying yields a

quadratic in bC1 /ȳ:

β2
(bC1
ȳ

)2
+

3(1 +
√
β)

2

(bC1
ȳ

)
− 1 = 0.

The positive root is

bC1
ȳ

=
−3(1+

√
β)

2
+
√

4β2 + 9
4
(1 + β + 2

√
β)

2β2
, (39)

and, by (38),

bC2
ȳ

=
−3(1+

√
β)

2
+
√

4β2 + 9
4
(1 + β + 2

√
β)

2β3/2
. (40)
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These are the closed-form expressions reported in the main text and used to construct the

commitment benchmark.

A.4 Intermediate Commitment with a Debt Ceiling

We now derive the key objects for the intermediate-commitment case with a debt ceiling b̄

and enforcement cost ϕ.

Time-2 Problem and the Value Gap

At t = 2, given inherited b1 and a ceiling b̄, the government chooses b2 to maximize

V2(b1, b̄) = max
b2

{
u(c2)− ϕ1{b2>b̄} + β E[u(c3) | B]

}
,

with c2 = q(B)b2, B = b1 + b2, x = 1−B/ȳ and q(B) =
√
x. Define the continuation value

excluding the penalty:

f0(b2 | b1) = u(c2) + β E[u(c3) | B] = − 1

b2
√
x
+

β

ȳ

(
1− 2x−1/2

)
, x = 1− b1 + b2

ȳ
. (41)

When ϕ = 0, the FOC coincides with the no-commitment case and yields the interior best

response b†2(b1) in (28).

With the ceiling and enforcement cost, the period-2 policy is

b2(b1, b̄) =

b†2(b1), if f0(b
†
2(b1) | b1)− ϕ > f0(b̄ | b1),

b̄, otherwise.

For given b1, a ceiling b̄ is enforceable if the period-2 incentive constraint

f0
(
b†2(b1) | b1

)
− ϕ ≤ f0

(
b̄ | b1

)
holds. Among enforceable ceilings, the period-1 government chooses the largest one. This

implies that, whenever the ceiling is used (i.e., b2(b1, b̄) = b̄ in equilibrium), it lies on the

indifference locus

f0
(
b†2(b1) | b1

)
− ϕ = f0

(
b̄ | b1

)
, (42)

which determines b̄ as a function of b1.

To sustain the commitment allocation (bC1 , b
C
2 ), the planner sets b̄ = bC2 and chooses ϕ so
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that the period-2 government is indifferent between deviating to b†2(b
C
1 ) and respecting the

ceiling:

f0(b
†
2(b

C
1 ) | bC1 )− ϕ = f0(b

C
2 | bC1 ).

The smallest enforcement level that satisfies this is the value gap

ϕmin = f0

(
b†2(b

C
1 )
∣∣∣ bC1 )− f0

(
bC2
∣∣ bC1 ) > 0, (43)

which coincides with equation (15) in the main text.

Derivatives of the Continuation Value

For notational convenience, define

x(b1, b2) = 1− b1 + b2
ȳ

, s(b1, b2) =
√
x(b1, b2).

Then the continuation value (41) can be written as

V (b1, b2) = −
1

b2 s(b1, b2)
+

β

ȳ

(
1− 2

s(b1, b2)

)
. (44)

We will use this representation to derive the generalized Euler equation under intermediate

commitment.

Using x = 1− (b1 + b2)/ȳ and ∂x/∂bj = −1/ȳ for j = 1, 2, we obtain

∂s

∂bj
=

1

2
x−1/2 ∂x

∂bj
= − 1

2ȳ
x−1/2,

∂

∂bj

(1
s

)
=

1

2ȳ
x−3/2, j = 1, 2.

Differentiating (44) gives:

Derivative with respect to b1.

∂V

∂b1
(b1, b2) = −

1

b2

∂

∂b1

(1
s

)
− 2β

ȳ

∂

∂b1

(1
s

)
= −

(
1

2ȳ b2
+

β

ȳ2

)
x(b1, b2)

−3/2. (45)
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Derivative with respect to b2.

∂V

∂b2
(b1, b2) =

1

b22s
− 1

b2

∂

∂b2

(1
s

)
− 2β

ȳ

∂

∂b2

(1
s

)
=

1

b22
√

x(b1, b2)
−

(
1

2ȳ b2
+

β

ȳ2

)
x(b1, b2)

−3/2. (46)

Envelope Result for the Disciplined Continuation Value

For each b1, denote by b⋆2(b1) the disciplined policy that respects the ceiling and solves the

indifference condition (42), and define the associated continuation value

V ⋆(b1) = V (b1, b
⋆
2(b1)).

For comparison, denote by b†2(b1) the unconstrained best response from (28). A standard

implicit-function argument shows that

dV ⋆

db1
(b1) =

∂V

∂b1

(
b1, b

†
2(b1)

)
+

∂V

∂b2

(
b1, b

†
2(b1)

)db†2
db1

(b1), (47)

so dV ⋆/db1 depends only on the unconstrained threat policy b†2(b1) and its derivative. Substi-

tuting (45), (46), and (30) into (47) yields an explicit expression for dV ⋆/db1 in terms of b†2,

x(b1, b
†
2), and the parameters (β, ȳ).

Time-1 Problem and Proof of Proposition 2

At time 1, with a ceiling policy that induces b⋆2(b1), the government chooses b1 to maximize

V1(b1) = u(c1) + βV ⋆(b1) = −
1√

x⋆(b1) b1
+ βV ⋆(b1),

where

x⋆(b1) = 1− b1 + b⋆2(b1)

ȳ
.

The FOC is

0 = − 1 + b⋆2
′(b1)

2ȳ

(
x⋆(b1)

)−3/2

b1
+

(
x⋆(b1)

)−1/2

b21
+ β

dV ⋆

db1
(b1), (48)

where dV ⋆/db1 is given by (47). Rewriting (48) in terms of B = b1 + b⋆2(b1) and x⋆ = 1−B/ȳ

yields the generalized Euler equation (16) in the main text.

We are now in a position to prove Proposition 2.
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Proof of Proposition 2. Part (1) follows immediately from the fact that when ϕ = 0 the

penalty term in V2(b1, b̄) is inactive, so the period-2 best response is b†2(b1) from (28). The

period-1 FOC then coincides with the no-commitment condition (11) in the main text

(equivalently (34) here), yielding (bNC
1 , bNC

2 ).

For part (2), fix 0 < ϕ < ϕmin. For each b1, the ceiling is enforceable only if the period-2

incentive constraint

f0(b
†
2(b1) | b1)− ϕ ≤ f0(b̄ | b1)

is satisfied. Since tighter ceilings reduce period-2 consumption without relaxing future

constraints, the period-1 government chooses the largest enforceable ceiling, which lies on

the indifference condition (42). At this ceiling, b2(b1, b̄) = b̄ = b⋆2(b1), and substituting B =

b1 + b⋆2(b1) into the period-1 problem yields the generalized Euler equation (16). Comparing

with the commitment and no-commitment benchmarks, and using the fact that the ceiling

partially disciplines the period-2 overborrowing motive but does not eliminate it, implies

b⋆1 ∈ (bC1 , b
NC
1 ) and b⋆2 ∈ (bC2 , b

NC
2 ).

Part (3) follows from the definition of ϕmin in (43). For ϕ = ϕmin, the ceiling b̄ = bC2

exactly satisfies the incentive constraint at b1 = bC1 , making the commitment allocation

(bC1 , b
C
2 ) self-enforcing at t = 2. For any ϕ > ϕmin, deviating to b†2(b

C
1 ) is strictly worse for

the period-2 government, so the same ceiling remains enforceable and (bC1 , b
C
2 ) solves the

period-1 problem. Thus, for all ϕ ≥ ϕmin the unique sustainable allocation coincides with the

commitment benchmark.

B Computational Strategy

This appendix describes how we compute the Markov-perfect equilibrium of the infinite-

horizon model with long-term debt and endogenous debt-ceiling announcements.

B.1 State Space, Grids, and Interpolation

The government’s state at the beginning of a period is

(y,B, B̄),

where y is the current endowment realization, B is the stock of outstanding long-term debt

carried into the period, and B̄ is the inherited debt ceiling announced in the previous period.

The exogenous process for y follows the AR(1) specification described in Section 3, discretized
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using a finite Markov chain with Ny nodes and transition matrix Py.

We approximate the endogenous state variables on finite grids:

• A grid B = {B1, . . . , BNB
} for outstanding long-term debt.

• A grid B̄ = {B̄1, . . . , B̄NB̄
} for the announced debt ceiling.

Bounds [Bmin, Bmax] and [B̄min, B̄max] are chosen to be wide enough that the equilibrium

support of debt and ceilings lies in the interior of each grid. We use evenly spaced points for

both B and B̄ in the baseline implementation.

For expectations and bond pricing, we repeatedly evaluate objects such as value functions,

default probabilities, and policy probabilities at off-grid points. To do so we construct

multidimensional interpolants (Matlab’s griddedInterpolant) on the tensor product grid

S = B × B̄ × Y ,

and use multilinear interpolation in (B, B̄, y) whenever necessary.

B.2 Extreme-Value Formulation and Policy Probabilities

We follow Dvorkin et al. (2021) and solve the government’s problem in a stochastic choice envi-

ronment with additive Type I extreme-value shocks. For each state (y,B, B̄) the government

has two types of actions:

1. Default: exit financial markets, consume ϱ(y), and transition into autarky according

to (24).

2. Repay and choose next period’s debt and ceiling (B′, B̄′), subject to the implementability

constraint (21) and the ceiling cost Φ(B′, B̄).

Let vD(y,B, B̄) denote the continuation value from default, and let

vR(y,B, B̄;B′, B̄′)

denote the value from repaying and choosing (B′, B̄′) optimally in the future.

We assume that:

• The default option is subject to an idiosyncratic taste shock εD.
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• Each repayment alternative (B′, B̄′) is subject to a shock εR(B′, B̄′).

Shocks are Type I extreme value, with scale parameter v > 0, and we allow for correlation

among repayment alternatives through a correlation parameter p ∈ (0, 1), which nests the

standard logit when p = 1. Under this specification, the probability of choosing a particular

repayment action (B′, B̄′) conditional on repaying is

G(B′, B̄′ | y,B, B̄) =
exp
(

vR(y,B,B̄;B′,B̄′)
p v

)
∑

(B′′,B̄′′) exp
(

vR(y,B,B̄;B′′,B̄′′)
p v

) ,
and the probability of default is

D(y,B, B̄) =
exp
(

vD(y,B,B̄)
v

)
exp
(

vD(y,B,B̄)
v

)
+
[∑

(B′′,B̄′′) exp
(

vR(y,B,B̄;B′′,B̄′′)
p v

)]p .
In the implementation we work with “adjusted” value objects that factor out common

components of vR and vD and compute G and D using vectorized expressions based on these

formulas.

B.3 Joint Iteration on Values and Bond Prices

Equilibrium is characterized by a fixed point in the space of (i) government value functions,

(ii) default and policy probabilities, and (iii) the bond-price function q(y,B′, B̄′). We solve

for this fixed point by iterating on the joint mapping induced by the government’s Bellman

equation and the lenders’ zero-profit condition.

Initialization. We start from an initial guess for:

• The repayment value kernel vR0 (y,B, B̄;B′, B̄′) (equivalently, the object denoted υ in

the code).

• The default value vD0 (y,B, B̄).

• The bond-price function q0(y,B
′, B̄′).

The initial conditions are either taken from the no-ceiling benchmark or from a previously

solved nearby parameterization to accelerate convergence.

48



Step 1: Probabilities G and D. Given current value objects (vRt , v
D
t ), we compute:

• The conditional repayment choice probabilities Gt(B
′, B̄′ | y,B, B̄) as in the logit

formula above.

• The default probability Dt(y,B, B̄).

Both objects are stored on the tensor-product grid and represented by griddedInterpolant

objects for efficient evaluation.

Step 2: Expected continuation values. Using Gt and Dt, we compute expected contin-

uation values. For each state (y,B, B̄) we form

Ey

[
V (y′, B′, B̄′)

]
=
∑
y′

Py(y
′ | y)

[
Dt(y

′, B′, B̄′) vDt (y
′, B′, B̄′) + (1−Dt(y

′, B′, B̄′)) ṽRt (y
′, B′, B̄′)

]
,

where ṽRt is the expected value under the repayment-choice distribution Gt in the following

period.

Step 3: Updating the value kernels. We then update the repayment and default values

using the Bellman equations:

vRt+1(y,B, B̄;B′, B̄′) = u
(
c(y,B, B̄;B′, B̄′)

)
+ β Ey

[
Vt(y

′, B′, B̄′)
]
,

vDt+1(y,B, B̄) = u(ϱ(y)) + β Ey

[
θ Vt(y

′, 0, B̄max) + (1− θ) vDt (y
′)
]
,

where consumption c(·) satisfies the implementability constraint with the chosen ceiling cost,

c+ (δ + (1− δ)z)B = y + qt(y,B
′, B̄′)

(
B′ − (1− δ)B

)
− Φ(B′, B̄).

To ensure numerical stability we apply a relaxation step:

vRt+1 ← λ vRt+1 + (1− λ) vRt , vDt+1 ← λ vDt+1 + (1− λ) vDt ,

with λ ∈ (0, 1).

Step 4: Updating the bond-price function. Given default probabilities Dt(y
′, B′, B̄′)

and the repayment-policy distribution Gt, we impose the lenders’ zero-profit condition to

49



obtain a new price function. For each (y,B′, B̄′),

qt+1(y,B
′, B̄′) =

1

1 + r
Ey′

[(
1−Dt(y

′, B′, B̄′)
) (

δ + (1− δ)z + (1− δ)E(B′′,B̄′′)|Gt

[
qt(y

′, B′′, B̄′′)
]) ]

,

where the inner expectation integrates over next-period debt and ceiling choices using Gt.
9

Step 5: Convergence. Steps 1–4 are iterated until the sup-norm of value-function

differences is below a small tolerance,

max
{
∥vRt+1 − vRt ∥∞, ∥vDt+1 − vDt ∥∞

}
< 10−5,

at which point we treat (vR, vD, G,D, q) as an equilibrium fixed point for the given value of

the debt-ceiling penalty parameter ϕ and cost curvature ζ.

B.4 Debt-Ceiling Costs and Variants

The cost of exceeding the debt ceiling is given by

Φ(B′, B̄) =

0, B′ ≤ B̄,

ϕ (B′ − B̄)ζ , B′ > B̄,

and we consider two cases in the quantitative analysis:

• Fixed-cost case (ζ = 0): any breach of the announced ceiling triggers a discrete

penalty ϕ, independent of the size of the violation.

• Quadratic-cost case (ζ = 2): larger violations of the ceiling are disproportionately

more costly, Φ ∝ (B′ − B̄)2.

For each specification we solve the equilibrium using the joint iteration described above. The

numerical algorithm is identical across cases; only the evaluation of Φ(B′, B̄) changes.

B.5 Simulation and Welfare Computation

Once the equilibrium objects (G,D, q) have been computed for a given ϕ, we simulate the

model to obtain model-implied moments and welfare.

9In the code this is implemented by looping over future grid points (B′′, B̄′′), accumulating the continuation
price, and then averaging with respect to both the income transition matrix and the policy probabilities.
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Simulation. We simulate long histories of the Markov state (yt, Bt, B̄t) using:

1. Draw a sequence of shocks {yt} from the Markov chain Py.

2. At each t, compute default D(yt, Bt, B̄t) and repayment probabilities G(Bt+1, B̄t+1 |
yt, Bt, B̄t).

3. Draw default vs repayment using D, and conditional on repayment, draw (Bt+1, B̄t+1)

using G.

We discard an initial burn-in and use the remainder to compute the distribution of debt,

default frequencies, average and volatility of spreads, and the behavior of announced ceilings.

Welfare. To evaluate the welfare effects of introducing debt-ceiling frictions we compute

expected lifetime utility under the equilibrium policies for each value of ϕ. Let V SP (y0, B0 | ϕ)
denote the planner’s evaluation of welfare under the Markov-perfect government policies

associated with ϕ, computed as

V SP (y0, B0 | ϕ) = E0

[
∞∑
t=0

βtu(ct)

]
,

where the expectation is taken over simulated histories consistent with the equilibrium policy

functions. We report consumption-equivalent welfare gains relative to the benchmark without

debt-ceiling costs (ϕ = 0), defined as the constant percentage adjustment in consumption

that makes the representative household indifferent between the two environments.

In all cases the algorithm converges rapidly and produces smooth policy functions and

bond-price schedules, thanks to the extreme-value formulation and the use of interpolation

on a moderate-sized multidimensional grid.

C Additional Figures and Tables
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Table 3: Regression Results for Monthly EMBIG

(1) (2) (3) (4) (5) (6) (7) (8)
Lagged dummies Full model dummies Lagged haircuts Full haircuts Dummies + haircuts + rating Fundamentals Full model

Fiscal rule -42.168∗ -59.280∗∗∗ -44.871∗ -60.552∗∗∗ -34.343 -34.800∗ -42.239∗ -52.712∗∗

(23.690) (20.931) (23.436) (20.296) (23.241) (21.016) (22.292) (20.919)

Restructuring dummy, 1 year lag 193.362∗∗∗ 116.593∗ 217.225∗∗ 222.122∗∗ 97.124 91.950
(62.135) (65.816) (107.542) (113.010) (109.145) (118.450)

Restructuring dummy, 2 year lag 89.724∗ 100.703∗∗ 79.590 79.192 34.454 87.405
(50.654) (49.986) (96.852) (99.556) (95.717) (96.803)

Restructuring dummy, 3 year lag 29.323 50.934 -95.417 -96.716 -87.042 -20.725
(43.674) (38.757) (68.717) (59.653) (64.259) (62.423)

Restructuring dummy, 4 and 5 year lag 13.717 50.128∗ -149.403∗∗ -150.527∗∗ -116.785∗ -82.993
(33.621) (28.860) (73.299) (60.360) (66.517) (58.449)

Restructuring dummy, 6 and 7 year lag -3.562 17.732 -169.371∗∗∗ -169.795∗∗∗ -172.215∗∗∗ -148.988∗∗∗

(31.936) (26.701) (62.548) (50.134) (57.650) (47.820)

US low-grade corporate yield 56.243∗∗∗ 55.155∗∗∗ 55.996∗∗∗ 54.983∗∗∗ 56.090∗∗∗ 56.099∗∗∗ 54.961∗∗∗ 55.100∗∗∗

(4.205) (4.122) (4.200) (4.120) (4.210) (4.151) (4.167) (4.128)

Residuals -42.801∗∗∗ -42.323∗∗∗ -58.536∗∗∗ -41.427∗∗∗

(5.256) (5.183) (6.215) (5.266)

Public debt to GNI 3.984∗∗∗ 4.060∗∗∗ 4.823∗∗∗ 3.857∗∗∗

(1.232) (1.213) (1.089) (1.229)

GDP real growth -9.945∗∗∗ -10.659∗∗∗ -13.559∗∗∗ -10.367∗∗∗

(2.558) (2.566) (3.143) (2.634)

Reserves to imports -1.573∗∗∗ -1.613∗∗∗ -1.585∗∗∗

(0.452) (0.452) (0.453)

Inflation 0.265∗∗ 0.214∗ 0.198
(0.123) (0.124) (0.121)

Budget balance to GDP -12.366∗∗∗ -12.494∗∗∗ -12.219∗∗∗

(3.867) (3.832) (3.933)

Current account to GDP -6.228∗∗∗ -5.789∗∗∗ -5.826∗∗∗

(1.637) (1.591) (1.647)

Political Risk Index (ICRG) -12.593∗∗∗ -12.765∗∗∗ -14.084∗∗∗ -12.645∗∗∗

(1.665) (1.683) (1.922) (1.674)

Haircut (SZ), 1 year lag 3.414∗∗∗ 2.377∗∗ -0.914 -0.902 -0.117 0.578
(1.315) (0.981) (1.994) (1.863) (2.009) (1.986)

Haircut (SZ), 2 year lag 1.853∗ 2.055∗∗ 0.027 0.020 0.740 0.154
(1.006) (0.799) (1.885) (1.823) (1.843) (1.683)

Haircut (SZ), 3 year lag 1.594 1.545∗ 3.323∗∗ 3.331∗∗ 2.845∗∗ 1.828
(1.015) (0.797) (1.679) (1.405) (1.427) (1.266)

Haircut (SZ), 4 and 5 year lag 1.233∗ 1.787∗∗∗ 4.058∗∗∗ 4.076∗∗∗ 3.899∗∗∗ 3.343∗∗∗

(0.688) (0.619) (1.522) (1.276) (1.274) (1.277)

Haircut (SZ), 6 and 7 year lag 0.875 1.289∗∗ 4.159∗∗∗ 4.167∗∗∗ 4.327∗∗∗ 4.179∗∗∗

(0.608) (0.526) (1.179) (1.005) (1.075) (0.923)

Constant -65.316∗ 772.939∗∗∗ -64.273∗ 789.493∗∗∗ -66.876∗ -66.584∗ 836.802∗∗∗ 780.092∗∗∗

(36.288) (119.196) (36.640) (121.066) (36.385) (35.365) (132.951) (119.708)
Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
N 9194 9186 9194 9186 9194 9186 9194 9186
R-squared 0.596 0.690 0.595 0.691 0.603 0.661 0.648 0.693
Adjusted. R-squared 0.593 0.687 0.591 0.687 0.598 0.657 0.644 0.689

Notes: This table reports coefficients from unbalanced panel regressions of monthly EMBIG sovereign yield spreads—measured as the average
country spread over U.S. Treasury bonds (EMBIG stripped spread, in basis points)—on fiscal rules, restructuring history, haircut measures, global
risk factors, and macroeconomic fundamentals. The sample covers 57 emerging and developing economies over 1993–2019, augmenting the Cruces
and Trebesch (2013) dataset with a fiscal-rule indicator constructed from the IMF Fiscal Rules Database (the same source underlying Figure 1)
and using monthly restructuring and haircut variables following Cruces and Trebesch (2013) and Arce and Fourakis (2025). The country sample
includes Angola, Argentina, Azerbaijan, Bulgaria, Belarus, Bolivia, Brazil, Chile, China, Cameroon, Colombia, Costa Rica, Dominican Republic,
Ecuador, Egypt, Ethiopia, Gabon, Ghana, Guatemala, Honduras, Croatia, Hungary, Indonesia, India, Iraq, Jamaica, Jordan, Kazakhstan, Kenya,
Lebanon, Sri Lanka, Lithuania, Morocco, Mexico, Mongolia, Mozambique, Malaysia, Nigeria, Pakistan, Panama, Peru, Philippines, Papua New
Guinea, Poland, Paraguay, Russia, El Salvador, Serbia, Thailand, Tunisia, Turkey, Ukraine, Uruguay, Venezuela, Vietnam, South Africa, and
Zambia. Country-specific fundamentals are lagged 12 months, while the U.S. low-grade corporate yield and the ICRG Political Risk Index are
lagged 1 month. All regressions include country and time fixed effects, and robust standard errors are clustered at the country level.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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Table 4: Regression Results for Monthly Standard Deviation of Daily EMBIG

(1) (2) (3) (4) (5) (6) (7) (8)
Lagged dummies Full model dummies Lagged haircuts Full haircuts Dummies + haircuts Dummies + haircuts + rating Fundamentals Full model

Fiscal rule -4.755∗∗∗ -4.888∗∗∗ -4.859∗∗∗ -4.903∗∗∗ -4.301∗∗ -4.236∗∗∗ -4.602∗∗∗ -4.524∗∗∗

(1.688) (1.592) (1.656) (1.571) (1.670) (1.616) (1.652) (1.601)

Restructuring dummy, 1 year lag -3.704 -7.229 1.237 1.191 -5.056 -4.897
(4.195) (4.506) (6.395) (6.601) (6.942) (7.171)

Restructuring dummy, 2 year lag -2.645 -1.876 2.596 2.576 0.594 3.377
(4.814) (5.026) (8.843) (9.050) (8.901) (9.173)

Restructuring dummy, 3 year lag -7.135∗ -5.920 -6.216 -6.298 -5.523 -2.023
(3.888) (3.888) (6.606) (6.495) (6.375) (6.487)

Restructuring dummy, 4 and 5 year lag -3.488 -2.115 -12.187∗∗ -12.256∗∗ -10.586∗ -8.195
(3.065) (2.859) (5.755) (5.330) (5.396) (5.245)

Restructuring dummy, 6 and 7 year lag -4.078∗ -3.142 -14.147∗∗∗ -14.184∗∗∗ -14.488∗∗∗ -13.128∗∗∗

(2.412) (2.342) (4.502) (4.240) (4.274) (4.236)

US low-grade corporate yield 3.885∗∗∗ 3.836∗∗∗ 3.876∗∗∗ 3.832∗∗∗ 3.877∗∗∗ 3.877∗∗∗ 3.827∗∗∗ 3.834∗∗∗

(0.453) (0.452) (0.453) (0.453) (0.453) (0.454) (0.451) (0.452)

Residuals -1.746∗∗∗ -1.741∗∗∗ -2.549∗∗∗ -1.692∗∗∗

(0.369) (0.365) (0.433) (0.371)

Public debt to GNI 0.139 0.142 0.211∗∗ 0.130
(0.096) (0.096) (0.089) (0.096)

GDP real growth -0.583∗∗∗ -0.564∗∗∗ -0.802∗∗∗ -0.587∗∗∗

(0.191) (0.192) (0.217) (0.195)

Reserves to imports -0.040 -0.038 -0.040
(0.034) (0.034) (0.034)

Inflation 0.032∗∗∗ 0.032∗∗∗ 0.030∗∗∗

(0.008) (0.008) (0.008)

Budget balance to GDP -0.749∗∗∗ -0.764∗∗∗ -0.749∗∗∗

(0.265) (0.264) (0.269)

Current account to GDP -0.258∗∗ -0.278∗∗ -0.257∗∗

(0.116) (0.113) (0.120)

Political Risk Index (ICRG) -0.596∗∗∗ -0.601∗∗∗ -0.679∗∗∗ -0.605∗∗∗

(0.143) (0.142) (0.153) (0.144)

Haircut (SZ), 1 year lag -0.109 -0.150∗∗ -0.156 -0.155 -0.101 -0.074
(0.072) (0.071) (0.108) (0.105) (0.115) (0.118)

Haircut (SZ), 2 year lag -0.084 -0.071 -0.164 -0.167 -0.127 -0.161
(0.073) (0.074) (0.145) (0.149) (0.147) (0.149)

Haircut (SZ), 3 year lag -0.141∗ -0.143∗ -0.041 -0.042 -0.066 -0.123
(0.081) (0.073) (0.139) (0.135) (0.128) (0.126)

Haircut (SZ), 4 and 5 year lag -0.014 -0.004 0.209∗ 0.208∗ 0.204∗ 0.146
(0.062) (0.056) (0.118) (0.109) (0.105) (0.104)

Haircut (SZ), 6 and 7 year lag -0.018 -0.003 0.251∗∗∗ 0.247∗∗∗ 0.266∗∗∗ 0.249∗∗∗

(0.046) (0.045) (0.086) (0.085) (0.084) (0.082)

Constant -9.527∗∗∗ 28.370∗∗∗ -9.754∗∗∗ 28.145∗∗∗ -9.613∗∗∗ -9.608∗∗∗ 34.665∗∗∗ 29.052∗∗∗

(3.608) (10.371) (3.696) (10.386) (3.626) (3.637) (10.385) (10.431)
Country fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
N 8996 8989 8996 8989 8996 8989 8996 8989
R-squared 0.245 0.269 0.244 0.269 0.248 0.260 0.261 0.271
Adj. R-squared 0.238 0.262 0.237 0.261 0.240 0.252 0.253 0.263

Notes: This table reports coefficients from unbalanced panel regressions with robust standard errors clustered at the country level. The dependent
variable is the monthly volatility of daily EMBIG returns, measured as their standard deviation. The dataset, country coverage, and variable
construction follow Table 3. The analysis covers 1994–2019. Country-specific fundamentals are lagged 12 months, while the U.S. low-grade corporate
yield and the ICRG Political Risk Index are lagged 1 month.
∗∗∗ Significant at the 1 percent level.
∗∗ Significant at the 5 percent level.
∗ Significant at the 10 percent level.
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