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Abstract

Why do countries set sovereign debt ceilings if they keep raising them? This paper shows
that debt ceilings can serve as intermediate commitment devices that reduce expected
dilution, thereby lowering spreads—and their volatility—even without reducing total
borrowing. We propose a new sovereign default model with long-term debt in which
each government inherits a previously announced ceiling but may revise it by paying
a political or institutional deviation cost. This friction generates a state-dependent
form of partial commitment. The ceiling mitigates debt dilution at the expense of fiscal
flexibility, leading the government to voluntarily adopt a ceiling that limits the discretion
of its future selves. Governments choose rules that are costly—but not impossible—to
adjust, trading off lower spreads and volatility through reduced dilution against the
option value of fiscal flexibility in bad times. Consistent with this mechanism, we show
that emerging-market countries operating under fiscal rules exhibit lower sovereign
spreads and lower spread volatility, even though breaches and revisions occur.
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1 Introduction

Sovereign bond markets price not only the fundamentals that determine a government’s
capacity to repay, but also its incentives to dilute existing creditors by issuing additional
debt. Such dilution incentives create a classic dynamic tension: governments borrow more
in the future than is ex-ante optimal, raising default risk and current borrowing costs. To
manage these frictions, many countries have adopted fiscal rules—including debt ceilings,
deficit limits, and expenditure caps—that function as policy anchors for fiscal behavior and
have proliferated over the past four decades (left panel of Figure 1). Over the same period,
changes, suspensions, and breaches of these rules have also become more frequent (right
panel of Figure 1), suggesting that governments value the discipline fiscal rules provide but
also face incentives to revise them when conditions deteriorate. Why do governments adopt
fiscal rules they may later overturn, and what are the implications for sovereign spreads and

macroeconomic outcomes?

Figure 1: Trends in the Adoption and Revision of Fiscal Rules
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Note: The figure documents the rise in fiscal rules and in subsequent changes, suspensions, and breaches. Data
through 2021 come from the IMF Fiscal Rules Database. Data for 2022-2024 were compiled using IMF Article
IV reports, the Inter-American Development Bank’s macroeconomic country reports, and country-specific
sources. The updated series currently covers the 106 countries included in the 2021 IMF database.

In this paper, we show that self-imposed debt ceilings can serve as intermediate commit-
ment devices that discipline future borrowing while balancing the loss of fiscal flexibility:
ceilings that are too loose provide little commitment, whereas ceilings that are too tight
excessively constrain policy. By “self-imposed,” we mean ceilings that governments volun-
tarily adopt and optimally choose period by period but whose revision entails political or

institutional deviation costs.! When borrowing above a previously announced ceiling triggers

'For example, violating a ceiling may lower the incumbent party’s probability of reelection.



such a deviation cost, incumbents can limit the discretion of their future selves and commit
them to a more disciplined borrowing path. This partial-commitment mechanism reduces
expected dilution and lowers spreads—and their volatility—even without an external enforcer,
and without reducing total borrowing. Governments therefore have incentives to choose
ceilings that are costly to revise yet flexible enough to adjust when needed, meaningfully

disciplining future borrowing and improving macroeconomic outcomes.

In this context, we develop a new sovereign default model with long-term debt in which
each government strategically announces a debt ceiling for the following period, and the
successor inherits this promise while retaining the option to borrow above it by paying a

deviation cost.

The underlying mechanism hinges on a simple trade-off that balances two economic forces.
On the one hand, carrying the debt ceiling forward as a binding promise gives the government
partial commitment not to issue excessive long-term bonds in the future, thereby mitigating
the classic “debt dilution” bias in Eaton and Gersovitz (1981)-type models with long-term
debt: when additional issuance today raises the probability of default tomorrow, investors
anticipate legacy-holder ex-post dilution incentives and demand higher yields, lowering bond
prices (Hatchondo and Martinez, 2009; Chatterjee and Eyigungor, 2012). On the other hand,
the same ceiling restricts the government’s ability to respond to adverse shocks by issuing
additional debt, which can make default more attractive in some states and thus raise the
risk of actual repayment failure. The overall welfare impact reflects the trade-off between
lower borrowing costs through enhanced commitment and higher default risk due to reduced
fiscal flexibility. Naturally, endogenous intermediate commitment choices emerge from the
balance between preserving fiscal flexibility and restraining the successor in order to keep

borrowing costs low.

Hence, a central implication of the mechanism is that credible self-imposed constraints
reduce dilution risk and, in turn, lower sovereign spreads and their volatility. To provide
simple motivating evidence for this prediction, we run the following cross-country regressions
in the spirit of Cruces and Trebesch (2013):?

EMBI Spread, ; = o; +; + 3 FiscalRule;; + Z; 0 + €5,

where the dependent variable is the EMBI Global sovereign spread (a monthly measure of

hard-currency borrowing costs for emerging economies), FiscalRule; ; is a dummy equal to one

ZWe use a sample of 57 countries up to 2019, augmenting their dataset with the fiscal-rule indicator
constructed from the IMF Fiscal Rules Database (the same source underlying Figure 1). We extend the
original Cruces—Trebesch dataset using the updated series in Arce and Fourakis (2025).



when country ¢ has an active fiscal rule at time ¢, and Z;; collects the lagged restructuring and
haircut variables, global risk proxies, and standard macro controls. Appendix Table 3 shows
that the fiscal-rule coefficient 3 is consistently negative and statistically significant across
several specifications, implying that countries with a fiscal rule exhibit EMBIG spreads roughly
40-60 basis points lower than otherwise similar economies. Moreover, Appendix Table 4
documents a parallel result for market volatility: fiscal-rule adopters display significantly
lower monthly EMBIG volatility (a reduction of about 4-5 basis points in the standard
deviation of daily returns). This empirical pattern aligns with the mechanism in our model, in
which self-imposed fiscal constraints act as partial commitment devices that reduce perceived

sovereign risk.

Our analysis proceeds in two steps. First, we provide analytical results using a three-period
model in which all debt issued in periods 1 and 2 is repaid (or defaulted on) in period 3, which
isolates the core mechanism. Without commitment, the period-2 government overborrows
relative to the commitment allocation, because it fails to internalize how additional issuance
dilutes legacy bondholders and raises future default risk. Anticipating this behavior, the
period-1 government strategically announces a debt ceiling for period-2 borrowing, backed
by a cost of violating the ceiling, in order to discipline its successor. Depending on the size
of the violation cost, the resulting allocation lies strictly between the no-commitment and
full-commitment benchmarks. Once the cost exceeds a simple threshold—which we also
characterize analytically—the ceiling fully sustains the commitment allocation, and further
tightening has no effect. Moreover, we consider alternative cost functions, under which
breaches may or may not occur in equilibrium but the basic mechanism disciplining period-2

borrowing remains the same.

Second, we develop a stochastic infinite-horizon model in which a sequence of Markov
governments make borrowing and default decisions and announce a debt ceiling for the
following period. The successor inherits this ceiling but may issue above it by paying a
deviation cost, adapting the partial-commitment mechanism of Clymo, Lanteri and Villa
(2023) to sovereign debt limits. Embedding these announcements in a sovereign default
environment is essential: dilution incentives, endogenous default risk, and bond pricing
jointly determine the value of commitment. We calibrate the model to Argentina—where
no formal debt ceiling exists—and conduct counterfactual experiments that evaluate the
welfare consequences of introducing an optimally announced ceiling. The results show that
the government voluntarily imposes a costly ceiling on itself in order to harness the benefits
of partial commitment. By disciplining its successor, the self-imposed rule lowers borrowing
costs and raises welfare, even in the absence of an external enforcer. The magnitude of these

gains depends on the structure of the cost function and on the strength of the deviation



penalty.
The results highlight a broad message for sovereign debt markets: credible but flexible

fiscal rules can serve as valuable commitment devices, reducing spreads and improving welfare
by mitigating dilution, while fully rigid rules may backfire by increasing default risk. In our
framework, flexibility comes from endogenous, state-contingent ceilings that are costly to

revise; rigidity corresponds to exogenous constraints that bind regardless of conditions.

Related literature. This paper contributes to two strands of the literature: (i) sovereign
default and fiscal rules, and (ii) partial commitment in optimal fiscal policy. The sovereign-
default literature studies dilution and fiscal rules under exogenously given commitment
frictions, while the partial-commitment literature in optimal fiscal policy develops costly-
deviation mechanisms outside default environments. We bring the two together by modeling
debt-ceiling announcements as an endogenous source of partial commitment within a sovereign-
default framework, and we use the framework to show how governments can benefit from
voluntarily restricting their successors’ choices. These results have direct implications for
the macro—finance literature, showing how endogenous fiscal rules shape sovereign spreads

through their effects on commitment and credibility.

Sovereign Default and Fiscal Rules. In sovereign-debt models a la Eaton and Gersovitz
(1981) with long-term debt, the “debt-dilution” time inconsistency highlighted by Hatchondo
and Martinez (2009) and Chatterjee and Eyigungor (2012) generates persistent deficits: new
bond issues dilute legacy claims, raising required yields and lowering bond prices. Subsequent
work has quantified the welfare losses from dilution (Aguiar et al., 2020) and proposed both
state-contingent rules that eliminate dilution (Hatchondo et al., 2016) and simpler rules that
mitigate its impact (Hatchondo et al. 2022; Roch and Roldan 2023), evaluating gains by
comparing commitment versus no-commitment equilibria. Relatedly, Mateos-Planas et al.
(2025) examine how different exogenously imposed forms of commitment—such as commit-
ment to default thresholds or to continuation prices—alter default outcomes in standard
sovereign-debt models. Their commitment structures are taken as given and operate directly
on default conditions. In our framework, commitment instead arises endogenously: govern-
ments choose debt-ceiling announcements period by period to constrain their successors, who
may revise them only by incurring a cost. This mechanism generates state-dependent degrees
of partial commitment as an equilibrium outcome and shows how governments can benefit
from voluntarily restricting the discretion of their future selves. It thereby complements

the normative “rules versus flexibility” literature initiated by Amador et al. (2006) and



developed in Halac and Yared (2014a, 2017, 2020, 2022) by showing how fiscal rules operate
when the government is endowed with an endogenous, state-dependent choice of rule—a debt
ceiling—that it strategically announces each period and uses in equilibrium to discipline its

future selves, while allowing successors to breach it at a political and institutional cost.?

Optimal Fiscal Policy with Partial Commitment and Fiscal Announcement. Our framework
is related to the literature on optimal fiscal policy under limited commitment and on fiscal
announcements. First, on intermediate commitment (“partial commitment”), we build
on the idea that governments make non-contingent announcements but face costs when
deviating from them. Papers in this literature that study partial commitment typically model
re-optimization as arriving exogenously (e.g. Debortoli and Nunes, 2010, 2013), treating
deviations as opportunities that arise independently of the state. Unlike these approaches, we
adopt the costly-deviation mechanism of Clymo et al. (2023) and adapt it to sovereign debt
ceilings and default, so that the extent of reneging—and thus the degree of commitment—is
determined endogenously by the model’s state variables. This state-dependent slack then
shapes strategic debt-ceiling announcements. Relatedly, Farhi (2010), Klein et al. (2008),
and Karantounias (2019) use generalized Euler—equation methods to explore time consistency
and default, while Clymo and Lanteri (2020) show that even short-horizon commitment
can sustain first-best outcomes. We extend their approach by introducing costly, state-
contingent reneging of debt ceilings in a stochastic economy with sovereign default, where
dilution incentives, endogenous default risk, and bond pricing jointly determine the value of

commitment.

Second, on fiscal announcements per se, we bridge optimal-policy theory with the empirical
and quantitative work that treats announcements as exogenous drivers of expectations.
Empirical papers such as Mertens and Ravn (2012) and Alesina et al. (2015) document the
macro effects of announced plans, and quantitative studies like Mertens and Ravn (2011)
and Fernandez-Villaverde et al. (2015) embed announcement “shocks” in DSGE settings.
By distinguishing between announced and implemented policies—and by endogenizing the
cost of deviating from announcements—we embed insights from the empirical literature on
fiscal announcements in an optimal-policy framework. Our approach also relates to the
fiscal-rules literature (e.g., King et al. 1988; Schmitt-Grohe and Uribe 1997; Athey et al.
2005; Halac and Yared 2014b), which shows that limits on state contingency can amplify
fluctuations. We demonstrate that costly, partial state contingency—driven by political

constraints on commitment and strategic debt-ceiling announcements in a sovereign-default

3See also Espino et al. (2022) for an analysis of fiscal-rule suspensions during the COVID-19 crisis.



environment—generates rich dynamics with meaningful policy implications for the design of

fiscal rules and debt-management frameworks.

Structure of the paper. The remainder of the paper is organized as follows. Section 2
presents a three-period version of the model and delivers analytical results that clarify the
mechanism. Section 3 develops the infinite-horizon model with endogenous debt-ceiling
announcements, showing that self-imposed ceilings improve borrowing terms by mitigating
debt dilution but may also constrain fiscal flexibility and raise default risk; the resulting
strategic interactions generate intermediate, history-dependent fiscal rules that enhance

welfare and reduce spreads. Section 4 concludes.

2 Stylized Model

This section presents a tractable three-period benchmark that isolates the core mechanism

behind our debt-ceiling results.

Environment. Time is discrete with three periods, ¢ € {1,2,3}. The economy has no
output in the first two periods, y; = yo = 0, and is endowed with a deterministic amount
y > 0 in the final period. The government has access to international financial markets
and can borrow from risk-neutral foreign investors in periods 1 and 2. The representative

government values consumption according to

3

Zﬁt_lu(ct), where u(c) = —

t=1

1
C )
corresponding to CRRA preferences with risk aversion o = 2.

The government issues debt in periods 1 and 2, both maturing at ¢ = 3. Let b; denote
the face value issued in period 1 (long-term debt) and b, the face value issued in period 2

(short-term debt). Total obligations due at maturity are therefore B = by + b,.

For analytical convenience, define the repayment slack

j— B
:Uzyy €(0,1, sothat B=g(l—u). (1)

The variable x measures the fraction of endowment remaining after meeting debt obligations,
or equivalently, the economy’s fiscal space at repayment. Higher x indicates lower debt and a

greater capacity to repay.



Default, pricing, and period-3 utility. At ¢ = 3, the government decides whether to
repay or default. Output is y > 0, and default entails an output loss governed by a random

cost parameter 6, which is realized and observed by the government at date 3. We assume 6
1
29
of @ correspond to more severe output losses. If the government defaults, it retains only /0,

follows a Pareto distribution on [1,00) with shape parameter a = =, so higher realizations

whereas full repayment requires transferring y — B to creditors. Default occurs whenever

repayment is more costly than default:

SR
>
A

|

j—B <

Cost of repayment -
Resources in default

Intuitively, when debt obligations are large relative to output, the fiscal space = shrinks, so
the government is willing to default even for relatively low realizations of 6.

Because lenders are risk neutral and the risk-free rate is normalized to one, the bond price

equals the probability of repayment,
q(B) =Pr(6 > 1/z) = 2* = /. (2)

Higher debt (lower slack x) reduces the repayment probability and hence the bond price. At
t = 3, consumption c3 represents the government’s resources after deciding whether to repay
or default. If it repays, it transfers § — c3 = B to creditors; if it defaults, it avoids repayment

but loses a fraction of output. Formally,

— B, if the government repays,

<

(3)

C3 =

I

, if the government defaults,

where 6 > 1 governs the output loss in default. Consumption is therefore lower either because
resources are used to service debt or because output is reduced by the default penalty. Given
the pricing kernel (2), consumption (3), and the stochastic assumption on 6, the expected

utility at £ = 3 conditional on B is
1 —1/2
Efu(cs) | B] = = (1-227"2), (4)
Y

which captures the welfare cost of debt through two channels: a lower probability of repayment,

embedded in ¢(B), and reduced consumption in default states.



2.1 Sustaining Commitment through a Debt Ceiling

We now use the three-period framework to characterize how a debt ceiling can help sustain
the commitment allocation. We begin by characterizing the commitment and no-commitment
allocations. This benchmark allows us to isolate the fundamental tension between the
period-2 government’s borrowing incentives and the welfare of the period-1 government.
Under commitment, period-2 borrowing is predetermined and cannot respond myopically,
while under no commitment the period-2 government issues excessive debt because it does
not internalize how additional borrowing dilutes legacy bondholders and raises default risk.
Having established these extremes, we then introduce an intermediate case in which the
period-1 government can announce a debt ceiling, but the period-2 government may exceed
it only by paying a cost.

We allow the cost to follow a simple proportional parametric form, which nests both fixed
and proportional costs as special cases. Suppose that whenever the period—2 government

borrows above a ceiling b, it incurs a period-2 utility cost given by
(I)(b%l_)) = ¢ (bQ - B)C 1{b2>B}a ¢ > 0, C > 0. (5>

The parameter ¢ governs the curvature of the cost function. Three benchmark cases are of
interest: (i) ( = 0: a fixed cost of violating the ceiling; (ii) ( = 1: a piecewise-linear penalty
with marginal costs that increase discretely once the ceiling is exceeded; and (iii) { = 2: a
smooth quadratic penalty, differentiable at b, = b and thus suitable for characterizing the

interior tradeofl between incentives and distortions.

We proceed as follows. We first characterize the commitment and no-commitment
benchmarks. The cost in (5) is irrelevant under commitment and absent when ¢ = 0 (the
no-commitment case). We then analyze the intermediate-commitment economy for the
benchmark specifications ¢ € {0, 1,2}. In these cases, when ¢ > 0, the prospect of paying (5)
disciplines period-2 borrowing and allows the period-1 government to move the allocation

toward the commitment benchmark.

Commitment. Under full commitment, the government can choose both b; and by in
period 1 to maximize lifetime welfare, fully internalizing how total debt affects future

borrowing costs and repayment risk. Lifetime welfare is given by

VI (b, bs) = u(cr) + Bulcy) + B*Elu(cs) | B]



with ¢, = q(B)b;. Because the government internalizes the future price response ¢(B),
borrowing is disciplined across both bonds. In this three-period environment, commitment
at t = 1 is equivalent to full commitment: choosing b; and b, jointly fixes the entire path
of debt and precludes any subsequent reoptimization at ¢t = 2. The first-order conditions

characterizing the commitment allocation are

W(e)(a(B) + b ¢ (B) + 8 (u’<c2>b2q'<B> +8 - Bfu(es)| B]) o, (©)
()b (B) + 8 (u'<c2><q<B> b (B) + 6 - Blu(es)| B]) o )

These conditions balance the marginal benefit of issuing an additional unit of debt at ¢t =1
or t = 2 with its marginal cost. The terms ¢(B) + b;¢'(B) capture the direct effect of higher
borrowing on time-t resources: issuing one more unit of b, raises revenue through the bond

price ¢(B) but also lowers that price through ¢/'(B), reducing the value of outstanding debt.

In the condition for by, the additional term Su'(cq)beq’(B) reflects that increasing by also
changes the bond price at t = 2, thereby affecting period-2 consumption through its effect on
total debt B = by + by. In the condition for by, the term u/(c¢;)b1¢'(B) captures the symmetric
effect on the previously chosen b;: when the planner selects by, the induced change in ¢(B)
alters the valuation of existing obligations. Under commitment the planner internalizes this
effect, whereas a period-2 government under discretion would ignore it, which is the source of

the familiar time-inconsistency problem.

Finally, the last terms, [3? B%E[u(cg,) | B], capture the discounted marginal cost of
increasing total obligations B, which lowers expected utility in period 3 through a higher

probability of default or a greater repayment burden.

The solution to equations (6) and (7) is a pair (b¢,5Y), which must satisfy the following

equation obtained by dividing the two first-order conditions:

~1. (8)

Condition (8) is the standard Euler equation for intertemporal allocation. It requires the
government to choose (b¢,b¢) so that the discounted marginal utilities of consumption in

periods 1 and 2 are equalized. We can further simplify condition (8) to get the following

b = /B,

so the ratio between bS and b¢ is pinned down entirely by the discount parameter. Because

simple proportionality:



VB < 1, the commitment allocation features more b{ than bS, reflecting the government’s
ability to internalize future fiscal discipline. Substituting this relationship into the planner’s
problem yields a closed-form expression for b /7, from which b follows immediately via
the proportionality rule.* The resulting debt levels are lower in both periods relative to
the no-commitment case and borrowing is tilted toward period 1, where its marginal utility
is highest, while the marginal cost of debt depends only on total exposure B. This choice
contrasts with the no-commitment benchmark, where the period-2 government overissues

debt at t = 2, generating higher overall borrowing.

No commitment. Without commitment, decisions are sequential. In period 2, the govern-
ment takes the inherited debt stock by as given and chooses by to maximize current and future
utility, since the government can’t commit to any previously announce borrowing issuances.
The problem at t = 2 is:

VN (b)) = n%gx {U(CQ) + BEu(es) | B]},

with ¢y = q(B) bg. The first-order condition with respect to by is

W) a(B) + b (B) = =5 3 Elu(ey) | Bl Q)
Condition (9) is mathematically analogous to (7) under commitment, except that the period-2
government takes b; as predetermined. It equates the marginal benefit of issuing additional
debt to its marginal cost. The left-hand side captures the immediate gain at ¢ = 2: an extra
unit of by increases current resources by ¢(B), but also lowers the bond price through ¢/'(B),
which reduces the value of all outstanding short-term debt. The right-hand side reflects
the discounted marginal cost of higher total obligations B at t = 3, which worsen expected
utility through a higher likelihood or severity of default. Unlike under commitment, the
period-2 government treats b; as predetermined and does not internalize how its borrowing
decision interacts with the earlier choice of by; it optimally chooses by taking b; as given,
which will lead to excessive by issuance relative to the commitment benchmark, as captured

by Proposition 1.

4The explicit solution is provided in Appendix A.3.
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Solving condition (9) yields the following closed-form policy function:

_3+\/9+166<1—%>]. (10)

The policy function b;(bl) is decreasing in the inherited long-term debt b;: a larger stock

i) = 5

of outstanding obligations raises default risk and lowers the bond price, making additional
borrowing less attractive. It is decreasing in (3, since a more patient government discounts the
future cost of repayment more heavily and therefore finds it optimal to issue less debt at t = 2.
Equation (10) thus provides a closed-form characterization of the period-2 overborrowing

motive.

At time 1, the government and the lenders anticipate that the time 2 government will

reoptimize according to (10) and chooses b; to maximize
V¥ (b) = u(er) + Bulca(br)) + 57 Elu(cs) | B,

with ¢; = ¢(B) by, B = by 4 bl(by), and ¢y(by) = q(B) bl(by). The first-order condition for by

under no commitment is
w'(er) (a(B) + by (B) (1+ 01/ (b1) ) + (11)

+ 8 u’(c;)(q(B) b (by) + bl(b1) ¢/ (B) (1+b;'(b1))) + ﬁa%E[u(C;),) | B (1+bY (b)) | =0.

Condition (11) is a generalized Euler equation describing the rationale behind the optimal
choice of b; when future governments reoptimize.” As in the commitment case (6), the first
term captures the marginal benefit of raising resources at t = 1: issuing additional debt
expands current consumption by ¢(B) but depresses the bond price through ¢'(B) < 0,
lowering the value of all outstanding liabilities. The continuation value term inside the large
brackets reflects the discounted effect of higher debt on future utility at ¢ =2 and ¢ = 3. The
key difference from commitment is the appearance of the blue terms involving b;’ (b1), which
measure how an increase in b; modifies the period-2 government’s optimal issuance policy.
Because the t = 1 government internalizes that its successor will adjust borrowing in response
to changes in inherited debt, its Euler equation contains an additional channel: the effect
of by on the future price and quantity of debt issued by the period-2 government. Under

commitment, this channel disappears—future choices are fixed—so the blue terms drop out

SWe refer to (11) as a generalized Euler equation because it incorporates the strategic interaction between
the period-1 and period-2 governments through the derivative of the successor’s policy function, b;’ (by).

11



and (6) reduces to the standard intertemporal condition balancing the marginal utility gain
from extra resources at t = 1 with the discounted marginal cost of higher promised repayment.
Thus, the no-commitment Euler equation differs from the commitment counterpart only
through the policy-response terms b;’ (b1), which encode the strategic anticipations absent

under commitment.

Combining the period-2 condition (9) with the generalized Euler equation for b; under

no commitment (10), we obtain the following generalized Euler equation:

q'(B)
q(B)

u'(cz)
u'(c1)

3 — 140 (1465 (b)). (12)
This condition has the same structure as the commitment Euler equation (8), except for
the additional blue term. Under commitment, the discount factor between periods 1 and 2
satisfies fu'(cy)/u/(c1) = 1, so the planner equalizes discounted marginal utilities across
the two pre-repayment dates. Under no commitment, the extra term in blue captures the
strategic bias: it reflects how an increase in b; affects the successor’s borrowing choice b (b;)
and, through ¢’(B), the price of debt. The resulting condition (12) is an Euler equation
with an effective discount factor distorted by the strategic interaction between the period—1
and period-2 governments. Specifically, relative to commitment, the strategic term in blue
depresses the discount factor between periods 1 and 2: the government behaves as if it
effectively discounts period-2 marginal utility more heavily (an “excess impatience” induced
by the successor’s re-optimization). The size of the distortion depends on the bond-price
elasticity ¢’'(B)/q(B) and on how aggressively the period-2 government adjusts its borrowing,
b;l(bl). Since ¢'(B)/q(B) < 0 and 1 + b;l(bl) > 0, the entire blue term is negative, so
the strategic bias always lowers the effective discount factor relative to the commitment

benchmark.

The solution to (9)-(11) yields a pair (b, b5C) that differs systematically from the
commitment benchmark. Because the period-2 government places too little weight on the
future consequences of additional borrowing, it issues more debt than is dynamically efficient
under commitment, and the period-1 government—anticipating this behavior—adjusts its
own issuance accordingly. The resulting allocation features excessive total borrowing and an

intertemporal composition tilted toward period 2.

12



Excessive Period-2 Borrowing Under No Commitment

Proposition 1. Fiz 8 € (0,1) and § > 0. Let (b$,b5) be the optimal borrowing
choices under commitment at t = 1, and let (b)Y, b)) be the equilibrium choices in
the no—commitment economy. Then borrowing undertaken att = 2 — as a share of total

borrowing — is strictly higher without commitment:

NC C
NCb2 No = ch c - VA .
bNC + b] by + b5 1++/8

Proof. See Appendixz A.2.

Proposition 1 formalizes this result by showing that the share of total borrowing undertaken
at t = 2 is strictly higher without commitment than under commitment. Further details are

provided in Appendix A.2.

Intermediate commitment with a fixed cost (( =0). We retain the no-commitment
structure described above but introduce a borrowing ceiling b in period 2 and a fixed cost ¢ > 0

that applies whenever the ceiling is exceeded. The period-2 government then solves

Vo(b1,b) = n%zjx {u(cg) — ¢y, + BE[u(cs) | B]}

Absent the penalty (¢ = 0), the interior first-order condition yields the unconstrained best
response (10), identical to the t = 2 policy in the no-commitment case. Introducing the
ceiling with cost ¢ leads to a simple comparison: the government either (i) chooses the interior
point b;(bl) if it yields higher value than respecting the cap, or (ii) stops at the ceiling by = b

and avoid paying the cost.

To evaluate this decision transparently, define the value function excluding the penalty

term:

fo(ba [ b1) = u(ca) + BE[u(cs) | Bl.

For any given (by,b), the period-2 government chooses by according to

| eb), i fo(bh(D) | by) — ¢ > folb | b),
bz(bl,b) = (13)

b, otherwise.

That is, the government either borrows freely up to its unconstrained optimum b;(bl) or
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stops at the ceiling b if the expected utility gain from additional borrowing does not outweigh
the cost ¢.

At time 1, the government anticipates that its successor will reoptimize according to (13)

and chooses b; and b to maximize

Vi(bi,b) = u(er) + B (u(ca(bi, b)) — ¢ Ly, 555)) + 57 Elu(es) | Bl

with C1 = q(B) bl, B = bl + bg(bl, b), and CQ(bQ,b) = q(B) bg(bl,b>.
The choice of the ceiling b follows directly from the period-2 best response (13). For

any fixed by, the ceiling affects equilibrium only if it is enforceable, meaning the period-2
government weakly prefers respecting the cap to deviating to its unconstrained optimum.

This requires the incentive constraint

Fo(bh(br) [ b1) — ¢ < fo(b ] br).

Among all ceilings satisfying this condition, the period-1 government chooses the largest
enforceable value. The reason is that tighter ceilings reduce period-2 borrowing and therefore
depress ¢, without providing any additional benefit once the incentive constraint is satisfied.
Consequently, when ¢ is small enough so the planner will use the ceiling (i.e., values of ¢ that
are too small to make the commitment allocation self-enforcing), the optimal b lies exactly

on the indifference locus

Fo(bh(b1) | b1) — ¢ = fo(b | by), (14)

which pins down b uniquely as a function of b;. At such a ceiling, the period-2 government is
indifferent between deviating to b;(bl) and respecting b, and the equilibrium debt at ¢t = 2
satisfies by(b1,b) = b. This ensures that period-2 borrowing is disciplined while imposing
the minimal distortion on the allocation. Equation (14) implies the existence of a cutoff
enforcement level ¢, above which the commitment allocation (by,b) = (b¢,b5) becomes

sustainable. The smallest cost that makes the ceiling self-enforcing at t = 2 is the value gap:

¢min = fO <b;<blc)

b)) = fo(55) > 0. (15)

To characterize the optimal choice of b; under intermediate commitment, differentiate
Vi(b1,b) with respect to by. Using ¢; = ¢(B)by, c2 = q(B)b(b1), and B = by + b(b;), and

letting b'(b;) = %ﬂl) denote the policy-response term implied by the indifference condition,
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the generalized Euler equation is

w'(er)(q(B) + b1 (B)(1+ ' (b1))) (16)

+ Bl (c2)(q(B) b (b1) + ¢'(B) b(by) (1 + ¥ (by))) +ﬁa%E[u(cg) | B (L+V(by)) | =0.

Equation (16) has the same structure as the generalized Euler equation (11) under no
commitment. The only difference is the policy-response term: under no commitment the
relevant elasticity is b;’ (by), while under intermediate commitment the period—2 choice is
determined by the ceiling, by(b1,b) = b(b;), so the elasticity becomes ¥'(b;). Substituting b(b;)

and o/ (by) for bl(by) and bl/(by) transforms the no-commitment condition into (16).

The policy-response term b'(b;) is naturally shaped by how the optimal ceiling adjusts
when inherited debt changes. As seen in Figure 2, both by and the induced ceiling b decline
with higher costs, and the slope of the intermediate commitment locus therefore governs
the magnitude of &'(b;). When the ceiling is tightly disciplined (high ¢), small increases
in b; require only small adjustments in b, so &'(b1) is close to zero; when the cost ¢ is low,
the ceiling must respond more strongly to preserve incentive compatibility, generating a
larger b'(b;). Overall, the discipline imposed by the ceiling makes b'(b;) generally smaller in
magnitude than the unconstrained policy-response term that arises under no commitment. A

detailed derivation is provided in Appendix A.4.

To summarize, when ¢ > ¢, the economy replicates the commitment allocation. When
¢ < Gmin, the optimal pair (by,b) lies between the commitment and no-commitment bench-
marks, generating intermediate borrowing levels and maturities. Putting these two steps

together yields a simple, threshold characterization summarized by Proposition 2.
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Sustainable Allocations Under a Debt Ceiling

Proposition 2. Fiz a cost ¢ > 0. The solution to the intermediate-commaitment

problem is a pair (b3, b%) such that:

1. If ¢ = 0, the unique equilibrium is the no-commitment allocation (b],b5) =
(bNC, YY), given by (10) and (9).

2. If 0 < ¢ < Puin, the equilibrium is an intermediate-commitment allocation (b3, b%)
characterized by (14) and (16), with v5 € (b§,bN°) and by € (bS,0YC). The

planner sets b = b5,

3. If ¢ > éumin, the planner sets b = bS, and the economy sustains the commitment
allocation (b}, b3) = (b5, 05), given by (6) and (7), as a self-enforcing outcome at
=2

Proof. See Appendixz A.J.

Intuitively, the ceiling mitigates the period-2 overborrowing motive. For low costs it
only partially binds, reducing—but not eliminating—the overborrowing bias. Once the cost
reaches @uin, setting b = b5 fully restores the commitment plan; any additional enforcement

beyond ¢, is redundant.

Figure 2 illustrates how the sustainable debt levels (b3, b%) vary as a function of ¢. The
blue line shows the equilibrium with intermediate commitment, approaching the red and
yellow benchmarks as enforcement weakens or strengthens. For ¢ = 0, the economy exhibits
the no-commitment outcome with excessive borrowing. As ¢ increases, the debt ceiling
tightens and gradually aligns incentives across periods. Once ¢ reaches the threshold ¢y,
(indicated by the vertical line and shaded region), the ceiling fully sustains the commitment

plan and further increases in ¢ have no additional effect.
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Figure 2: Optimal Debt Positions Under Varying Commitment Strength
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Note. The figure plots optimal debt choices b and by, as functions of the cost ¢. The blue solid line represents
the case of intermediate commitment, while the red and yellow dashed lines correspond to the no-commitment
and full-commitment benchmarks, respectively. The blue star markers plot the endogenous ceiling. The
shaded gray region marks values of ¢ above the minimum threshold ¢.,;, required to sustain commitment.

Intermediate commitment with a piecewise—linear cost (( = 1). When ¢ = 1,
violating the ceiling entails a constant marginal penalty ¢ for each unit borrowed above b.
Hence the deviation cost has a kink at by = b: the marginal cost is zero for by < b and jumps to
¢ for by > b. This implies that, whenever the ceiling is relevant, the period-2 problem has no
interior optimum strictly above the ceiling. Intuitively, if b, > b were optimal, the government
could lower by slightly and save ¢ per unit while barely affecting continuation value, so an
optimum cannot lie in the violating region. As a result, the equilibrium choice is of bang-bang
form: either the government respects the ceiling exactly (by = b) when enforcement is strong
enough, or it ignores it and chooses the unconstrained optimum when enforcement is weak.
This kinked—marginal—cost logic explains why, in Figure 3, the endogenous ceiling binds under
¢ =1 once ¢ exceeds the threshold required to deter deviations. Formally, for by, > b the
first—order condition includes the constant term —¢, so the objective is strictly concave but
the optimum either lies at the boundary b, = b or at the unconstrained solution in the region
by < 0.

Intermediate commitment with a quadratic cost (¢ = 2). This case yields a tractable

first—order condition for the period—2 government and therefore provides a useful contrast
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with the environments ( = 0 and ( = 1. Numerical results for both ( = 1 and { = 2 are
presented in Figure 3, which illustrate the different ways in which ceilings shape borrowing

incentives.

Given (b, b), the period—2 government chooses by to maximize

Va(br, b) = max {u(c2) = 6(b2 = )15 + BElu(es) | B},
with ¢y = q(B)by and B = by + by. Define

fo(ba | b1) = u(c2) + BE[u(cs) | Bl.

For b, < b, the penalty is inactive and the first-order condition is identical to the no-commitment

case (9). For an interior optimum with b, > b, differentiating the objective yields

0 - _
—fo(bg | bl) — 2¢(b2 — b) = 0, bQ > b, (17)
0by
where

S folta 1) = (e (a(B) + bad (B) + 6 5 Elu(es) | Bl

Relative to the unconstrained best response b} (b;) in (10), the quadratic penalty introduces a
smooth marginal cost 2¢(by — b) that grows linearly with the violation. Let bg(bl, b) denote
the policy function solving the first-order condition (17). Because the quadratic penalty
is differentiable at by = b, the problem is smooth and admits a single interior optimality

condition.

Anticipating b$ (b1, b), the period-1 government chooses (b, b) to maximize
Vb1, 5) = uler) + B(u(ef) = 60 — 1)1 yg 5, ) + B Elu(es) | BY),

with ¢; = ¢(B9)by, ¢§ = q(B)bS (b, b), and B9 = by +b% (by, b). Differentiating with respect

to by yields the generalized Euler equation
0 = u'(c1) (g(B9) + b1 ¢ (B) (1 + b§'(b1, ) ) (18)

48 (e) (4B + (BB (1+19)) + B ~-Blues) | BA(1+69)]

where 09" denotes 9bS /0by. Equation (18) has the identical structure to the no-commitment
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Euler equation (11), except that the policy-response elasticity bY/(b1) is replaced by the
ceiling—induced response bg’ (by,b). As with the fixed-penalty case, the ceiling reduces the
sensitivity of period—2 issuance to inherited debt, thereby partially restoring the discipline

present under commitment.

To characterize the optimal ceiling, differentiate VlQ(bl, b) with respect to b. Because bg solves
the period—2 problem, the envelope theorem applies to V5, and the derivative decomposes
into two terms:

ove LY _
az% = /(1) ¢'(B9) by 3_62 + 200 (b5 = b) 1,95,

The second term captures the direct effect of relaxing the ceiling on the penalty paid at t = 2,
while the first term reflects how the ceiling influences period—1 resources through its effect
on the equilibrium borrowing b? and thus the bond price ¢(B). In order to characterize the
region in which the quadratic penalty is active, we focus on the region where bg > b, so the
indicator 1 (255} equals one throughout and can be dropped. Setting the derivative equal to
zero yields the optimality condition
W(e) (B by %i: +286 (b —B) = 0. (19)
Equation (19) shows that, unlike the fixed—cost case ¢ = 0, a quadratic penalty does not
imply b§ = b in equilibrium. Relaxing the ceiling reduces the penalty but also increases bQQ,
which lowers the bond price ¢(B) and therefore depresses ¢;. The optimal ceiling balances
these two forces, generating an interior gap b? — b > 0. Figure 3 shows that under a
quadratic penalty (( = 2), the gap between by and by shrinks as ¢ increases, but vanishes
only asymptotically as ¢ — oo, at which point the allocation converges to the commitment
benchmark. By contrast, under a linear penalty (¢ = 1), commitment is restored at a finite

threshold ¢y, similarly to the ¢ = 0’s case.
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Figure 3: Optimal Period-2 Borrowing Under Linear and Quadratic Costs
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Note. The figure plots optimal period-2 borrowing by and the associated borrowing ceiling by as functions of
the cost ¢, under two functional forms: a piecewise-linear penalty (¢ = 1) and a quadratic penalty (¢ = 2).
The blue solid line shows optimal constrained borrowing, the blue star markers plot the endogenous ceiling,
and the red and yellow dashed lines denote the no-commitment and full-commitment benchmarks, respectively.
Increasing enforcement strength progressively disciplines short-term borrowing, with the shape and rate of
convergence depending on the curvature of the penalty function.

The behavior of breaches differs across the three cost specifications. Under the quadratic
cost, breaches naturally arise in equilibrium: the marginal cost of exceeding the ceiling
increases only gradually, so the period-2 government finds it optimal to violate the ceiling
whenever the marginal value of additional borrowing exceeds the incremental political or
institutional cost of doing so. By contrast, with a fixed cost ({ = 0) or a linear cost ({ = 1),
breaches do not occur in the three-period benchmark. Because there is no uncertainty at
period 2, the government never finds it worthwhile to incur a discrete political or institutional
cost to obtain additional resources—the value of “purchasing” state contingency simply never
materializes. In a stochastic environment, however, the same fixed or linear costs can generate
breaches, as adverse states make the marginal value of extra borrowing high enough to justify
paying the cost. Thus, the curvature of the cost governs how sharply ceilings deter violations,

while uncertainty governs whether violations ever occur.

These insights motivate our transition to the stochastic infinite-horizon model, where
uncertainty, long-term debt dynamics, and forward-announced ceilings interact to produce

richer patterns of borrowing, occasional breaches, and endogenous discipline across time.
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3 Model

We build on the canonical Eaton and Gersovitz (1981) framework of sovereign default,
incorporating long-term debt and an endogenous debt ceiling. The government chooses
both the next period’s level of debt and a self-imposed ceiling on future debt, beyond which
borrowing incurs a quadratic cost. These costs are only paid when the desired borrowing
exceeds the previously promised debt ceiling, which captures frictions such as institutional
constraints, political economy considerations, or additional market-imposed discipline from

legacy bondholders.

3.1 Environment

Time is discrete and infinite. In each period, the government observes the realization of
an exogenous endowment y € ), which follows a Markov process with known transition
probabilities. The government begins the period with outstanding debt B € R, and a debt
ceiling B € R,. The debt ceiling is a choice variable in repayment and represents the upper

bound above which new borrowing incurs additional costs.

3.2 Government and Lenders

The government chooses whether to repay or default. Let d € {0,1} be the default indicator,

where d = 1 denotes default. The government’s value function is:

V(y,B,B) = dg}gﬁ(l —d)V"(y, B,B) +dV"(y), (20)

where V% is the value of repayment and V7 is the value of default.

Repayment. If the government chooses to repay, it selects next period’s debt B’ € B and

a new ceiling B’ € B. Consumption c¢ satisfies the resource constraint:

c+(6+(1-68)2)B=y+q(y,B,B)B —(1-6B]-®B,B)—B,B), (21

where q(y, B', B') is the price of long-term debt, § is the fraction of debt maturing each
period, z is the coupon, and the function «(B’, B) captures debt issuance costs. The function

®(B’, B) captures the additional cost of borrowing beyond the ceiling:
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_ , if B’ < B,

®(B',B) = ) i (22)
¢-(B'—B), if B> B,

where ¢ > 0 governs the severity of the penalty. The parameter ( > 0 governs how the
political and institutional cost of exceeding the ceiling scales with the size of the breach.
Consistent with Section 2, we consider two values for (. When ¢ = 0, any deviation from the
ceiling triggers a single discrete cost ¢, regardless of how large the breach is. This captures
environments where the key friction is a fixed political or procedural hurdle—for example,
reopening a fiscal law or bearing a reputational cost that arises once the ceiling is violated,
but does not depend on the amount of additional borrowing. In contrast, when ( = 2, the
penalty is convex in the size of the breach, so larger violations become disproportionately more
costly. This specification embodies the idea that political resistance, legislative bargaining
frictions, or reputational losses intensify with the magnitude of the deviation. Although these
two forces may interact in practice, we consider them separately for clarity, allowing us to
isolate how discrete versus convex costs affect the credibility and effectiveness of debt-ceiling

announcements.

The government’s recursive problem in repayment is thus:

VE(y, B, B) = max u(c) + BE, [V(y', B, B')] , (23)

c,B",B’

subject to the implementability constraint above.

Default. In the event of default, the country is excluded from financial markets and receives
autarky consumption o(y). Re-entry occurs with probability 6 € (0,1), in which case the
country returns with zero debt and the maximal allowable ceiling Byax. The default value

function is:

VP(y) = ulo(y)) + BEy [0V (Y, 0, Buax) + (1 = )V (y)] . (24)

Lenders and bond pricing. There is a continuum of risk—neutral international lenders
that discount at the constant gross rate R = 1 4+ r. They are competitive, so in equilibrium
the bond price equals the expected discounted payoff per unit of debt. A bond issued at

(y, B', B') promises, if the government repays next period, a coupon z and the possibility of
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reselling the remaining (1 — ¢) fraction of the bond. Thus the equilibrium bond price satisfies

_ 1 _ _ _ _
q(y> B/> B,) = m ]Ey’\y [(1_d(y/7 B/a B/)) (5+(1_5) (Z + Q(y,7 B”(y/7 Bl? Bl)? B//(y/7 Bl? B/)) ))] )

(25)
where d(y', B', B') € {0,1} is the default decision of the next-period government in state
(v',B',B"), and B"(y',B',B') and B"(y', B', B") denote its optimal choices of next-period
debt and ceiling. If default occurs (d = 1), lenders receive zero, so the payoff in (25) is zero
in those states. The price schedule ¢(-) is therefore determined jointly with the government’s

policy functions in a recursive Markov-perfect equilibrium.

3.3 Calibration

We follow Chatterjee and Eyigungor (2012) in parameterizing preferences, the stochastic
endowment process, and the structure of long-term debt. The model is calibrated at a
quarterly frequency. The government discounts the future at rate 5, households have CRRA
utility with coefficient o = 2, and international lenders discount at the risk-free rate » = 0.01.°
Long-term bonds mature geometrically at rate 6 = 0.05 per quarter and pay coupon z = 0.03.
This implies an average maturity of 1/6 = 20 quarters, or five years. Upon default, the

economy re-enters financial markets with probability § = 0.0385 each period.

Endowment process. Output follows an AR(1) process,
logy; = plogyi—1 + &4, e~ N(0,0¢?),

with persistence p = 0.9485 and innovation standard deviation oe = 0.0271, identical to the

estimates in Chatterjee and Eyigungor (2012).

Default cost function. Following Chatterjee and Eyigungor (2012), the consumption loss

in default is given by
o(y) =y — max{0, doy + dry*},

where the coefficients (dy, d;) determine the magnitude and curvature of the output cost. As
discussed below, these parameters are internally calibrated to match key external moments

of the Argentine data.

6In line with the sovereign default literature, we allow for r > 1/3. This wedge captures political myopia,
limited commitment, or unmodeled sovereign risks and helps generating realistic debt levels and spreads.
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Solution method and issuance costs. Unlike Chatterjee and Eyigungor (2012), we
solve the model using the extreme-value shock framework of Dvorkin et al. (2021), which
yields smooth policy functions and improves convergence. The correlation and variance of
the extreme value shocks are set to p = 0.37 and v = 6.8 x 1072, Because this solution
method alters the shape of policy rules relative to the original discrete-choice formulation, we
recalibrate the three internally chosen parameters. A detailed description of the computational

strategy is reported in Appendix B.

Following Dvorkin et al. (2021), we incorporate debt issuance (adjustment) costs to
discipline high-frequency swings in long-term debt. Absent such costs, long-maturity sovereign
debt models can generate implausibly large one-period changes in issuance, often followed by

immediate default. We specify the issuance cost as
u(B',B) =1, <exp (1| B'— BJ) — 1),

and set ¢; = 0.00005 and ¢5 = 28, as in Dvorkin et al. (2021). This parametrization implies a
small marginal cost for routine issuance while making large, discrete adjustments increasingly
expensive, helping the model match the smooth debt-accumulation dynamics observed in the
data.

Internally calibrated parameters. The parameters (3, dy, and d; are selected to match
three targeted moments from the Argentine data: the mean debt-to-output ratio, the mean
sovereign spread, and the volatility of spreads. Table 1 reports the targets, model moments,

and corresponding parameter values.

Table 1: Targeted Moments and Corresponding Parameters

Moment Model Data ‘ Parameter Value
Debt-to Y ratio 71 .70 I6] 0.941
Mean Spread .0752 .0815 do 0.030
Volatility of the Spread .0408 .0443 dy 0.431

Note: The table reports the internally calibrated parameters and their corresponding targeted moments.

In what follows, we introduce an endogenous ceiling and study its implications under two
alternative cost structures for breaching it: a fixed penalty ({ = 0) and a convex quadratic
penalty (¢ = 2). To make the mechanism as transparent as possible, Subsection 3.4 sets

¢ = 0.40, a deliberately large value that renders the ceiling nearly binding and isolates
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the commitment channel; this choice is purely illustrative and not meant as a quantitative
benchmark. We then turn to the quantitative analysis in Subsection 3.5, where we consider
the full range ¢ € [0,0.4] under both cost specifications. Within this range, we further
discipline ¢ using the spread moments in the data: for each ( € {0,2} we back out the
value of ¢ that reproduces the empirical decline in average sovereign spreads associated with
debt-rule adoption, and use it to quantify the implied per-breach versus ergodic violation

costs and the resulting consumption-equivalent welfare gains.

3.4 The Role of the Debt Ceiling: Commitment vs Flexibility

In our benchmark with ¢ = 0 (blue line in Figure 4), bond prices are determined only by
borrowing choices and the exogenous income shock.” We then introduce a debt ceiling by
setting ¢ = 0.4, which activates the endogenous penalty ®(B’, B) when borrowing exceeds
the self-imposed ceiling. The debt ceiling modifies equilibrium outcomes by altering the

government’s intertemporal incentives.

The underlying mechanism hinges on a trade-off between commitment and fiscal flexibility.
On the one hand, by choosing and maintaining a ceiling on future borrowing, the government
partially commits not to excessively dilute outstanding debt. This mitigates the classic “debt
dilution” problem in Eaton and Gersovitz (1981)-type models with long-term debt: when the
government issues additional debt today, it lowers the value of legacy bonds tomorrow by
raising the probability of default. Anticipating this, investors demand higher yields, which
depresses bond prices (Hatchondo and Martinez, 2009; Chatterjee and Eyigungor, 2012).
Promising a credible ceiling can reduce this incentive, raise bond prices, and ultimately lower
borrowing costs. On the other hand, the same ceiling constrains the government’s ability to
smooth consumption and respond to adverse shocks by issuing additional debt. In tight fiscal
states, this restriction can make default more attractive, increasing the risk of repayment

failure.

The net effect of promising a “reasonable” value of the next period’s debt ceiling thus
reflects the balance of these two forces: lower interest rates in the current period at the cost

of more limited borrowing capacity in the next period. Figure 4 illustrates this mechanism.

If borrowing above the debt ceiling is costless, any debt ceiling announcement is a non-informative signal
to future bondholders and as a result the model collapses exactly into the setup of Chatterjee and Eyigungor
(2012).
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Figure 4: Debt Ceilings, Bond Prices, and Cost Specifications
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Note: Each panel plots the equilibrium annualized spread as a function of the next-period debt ceiling
announcement. In both cases, moderate ceilings raise bond prices and lower credit spreads by mitigating debt
dilution, whereas excessively tight ceilings increase default risk, thereby reducing prices and widening spreads.
Panel a assumes a fixed cost of breaching the ceiling (¢ = 0), while Panel b assumes a convex quadratic cost
(¢ = 2), which makes larger violations disproportionately more costly. Solid blue lines correspond to the
model with a high debt-ceiling penalty (¢ = 0.40), while the dashed red lines refer to the costless-ceiling case

(¢=0).

The x-axis in Figure 4 reports the level of the promised next-period debt ceiling B’, while

the y-axis shows the annualized credit spreads which are computed as

S+(1-0z \' Y
(1+ Gz —0) -0+t

corresponding to a fixed level of next-period debt (B’, dashed vertical line). The red dashed
line depicts the bond price in the benchmark model without ceiling frictions (¢ = 0). The
blue continuous line shows the price in our model where the debt ceiling cost is ¢ = 0.4. Panel

a uses a fixed breach cost (¢ = 0) and Panel b uses a proportional quadratic cost ({ = 2).

For a wide range of values of B’ around and moderately below the fixed next-period debt,
the announced ceiling raises bond prices and lower credit spreads relative to the benchmark
without ceiling costs. In this region, the ceiling mitigates debt dilution and lowers borrowing
costs. When the ceiling becomes extremely tight, however—well below any level consistent
with rolling over existing debt—bond prices fall sharply and credit spreads increase. Very
small ceilings imply that the government would almost surely need to violate the ceiling in
adverse states, which raises default risk and depresses prices. Under the fixed-cost specification
(Panel a), this shows up as a low, flat segment: once the ceiling is tight enough to make
a breach nearly certain, the discrete penalty leads lenders to price in a high probability of

default. Under the quadratic specification (Panel b), the effect is even more pronounced.
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Because large violations become disproportionately costly, very tight ceilings generate sharply
higher default risk and a steep collapse in bond prices. In both cases, excessively low ceilings
are counterproductive: instead of reinforcing commitment, they undermine it by making

future policy too inflexible to absorb shocks.

In this latter case, the prospect of being unable to respond to future shocks raises the
likelihood of default, as shown in Figure 5. The associated increase in default risk leads to
higher yields and lower bond prices, consistent with Figure 4. Figure 5 also shows that the
default region is larger under fixed costs, since any ceiling breach triggers a discrete penalty
and makes repayment unattractive over a broad set of states. By contrast, bond prices fall
more sharply under the quadratic specification when ceilings are extremely tight: even if
the government continues to repay in many states, lenders price in the possibility of large
violations, which become disproportionately costly and raise the ex-ante default probability.
Hence Figures 4 and 5 speak to different margins—ex-ante pricing versus the government’s
realized default decisions—and together highlight how overly tight ceilings can undermine,

rather than reinforce, policy credibility.

Finally, the non-monotonicity reported in Figure 5 highlights a central result: promising
reasonable austerity can improve credit conditions, while excessive austerity can backfire by
undermining repayment incentives. These considerations suggest that the adoption of a debt
ceiling can generate welfare gains. By alleviating debt dilution without excessively restricting
fiscal flexibility, a moderate debt ceiling can improve the trade-off faced by the government,
enabling it to borrow at lower spreads while preserving enough space to respond to adverse
shocks. As we show in Subsection 3.5, this mechanism can raise ex-ante expected utility

relative to both the no-ceiling benchmark and overly rigid fiscal rules.
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Figure 5: Tight Ceilings Can Trigger Default Under Alternative Cost Structures
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Note: Each panel shows the default region in the space of current debt B and current debt ceiling B. Tight
ceilings can trigger default by weakening repayment incentives. Increasing ¢ from 0 to 0.4 shifts the economy
toward higher default risk when the ceiling binds at high debt levels. Fixed costs (¢ = 0) create sharper
threshold effects, whereas quadratic costs (¢ = 2) generate smoother distortions in the default boundary.

Finally, we analyze the policy functions for the debt ceiling itself. Figure 6 shows how
borrowing and debt-ceiling choices vary with the level of current debt (x-axis), holding
the endowment and the inherited ceiling—marked by the vertical dashed line—fixed. In
Panel b, which assumes a quadratic breaching cost, the government’s adjustment behavior
is considerably smoother than under the fixed-cost specification. For current debt levels
below the ceiling, borrowing is only mildly disciplined and both next-period debt and the
newly announced ceiling move gradually with the state. As current debt approaches and
exceeds the ceiling, the marginal cost of violating it rises, keeping next-period debt (the red
line) below the unconstrained benchmark (the yellow line) and inducing the government to

revise the ceiling (the blue line) cautiously. Unlike the discrete jump observed under the
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fixed-cost case in Panel a, the quadratic specification produces a continuous response: the
ceiling and borrowing choices adjust smoothly, with larger breaches becoming progressively
more expensive. Panel a indicates that the government finds it optimal to pay the breaching
cost only when current debt lies well above the inherited ceiling, at which point it adjusts

the announced ceiling upward more decisively.

Figure 6: Debt Ceilings and Borrowing choices
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Note: Each panel plots equilibrium borrowing and debt-ceiling choices as a function of current debt, holding
the endowment and the current period ceiling fixed. In both cases, borrowing is partially constrained by the
existing ceiling, while future ceilings are chosen slightly above next-period debt. The plots are generated for a
high-endowment state in which default risk is nil. Panel a assumes a fixed cost of breaching the ceiling (¢ = 0),
whereas Panel b assumes a convex quadratic cost (¢ = 2). Dashed red and solid blue lines correspond to the
model with a high debt-ceiling penalty (¢ = 0.40), while the dashed yellow lines refer to the costless-ceiling
case (¢ = 0).

3.5 Quantitative Implications of Endogenous Debt Ceilings

We now quantify the real and asset-pricing implications of introducing an endogenous

debt ceiling. We compute the lifetime utility of a patient social planner with discount

factor 837 = ﬁ under alternative enforcement strengths ¢, holding the initial state fixed

at (yo, Bo). The planner evaluates welfare under the actual equilibrium behavior of the
(impatient) government—that is, taking as given the policy rules Dg, B’Gd’, and B'G‘z’ induced

by a given ¢—and discounting forward:

~ ulc(Det). B (1), BY
o - - 0850

t=0
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We report consumption-equivalent welfare gains relative to the benchmark economy without

ceiling frictions (¢ = 0). Let A(¢) denote the constant consumption compensation such that

P _ U+ A (9) ]
V3 (yo, By | ¢) = Z A+r)y

t=0

where {¢!} is the consumption path implied by the ¢ = 0 economy starting from the same

initial state.

Figure 7 plots A(¢) for alternative breach-cost curvatures ¢ € {0,2}. Increasing ¢
strengthens the credibility of the announced ceiling by raising the marginal cost of issuing
debt above the inherited bound. As a result, higher ¢ progressively disciplines expected
future issuance and reduces anticipated debt dilution, improving bond prices today. At
the same time, stronger enforcement tightens fiscal flexibility in adverse states and can
increase the value of default in a subset of states. The net welfare effect therefore reflects the
equilibrium trade-off between enhanced commitment (lower expected dilution and borrowing
costs) and reduced flexibility. In both specifications, welfare gains rise with enforcement and
exhibit diminishing returns: most of the welfare improvements are achieved at relatively
modest values of ¢, while further increases primarily deliver marginal gains as the economy

approaches the one-period-ahead commitment allocation.

Figure 7: Welfare Gains from Debt Ceilings Under Alternative Cost Structures
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Note: Each panel reports consumption-equivalent welfare gains (relative to ¢ = 0) from introducing an
endogenous debt ceiling as a function of the enforcement parameter ¢. Moderate values of ¢ raise welfare by
inducing credible, but not excessively restrictive, ceilings. Panel a assumes a fixed per-breach cost ({ = 0),
while panel b assumes a convex quadratic cost (¢ = 2), which penalizes larger violations more heavily.

To connect the welfare results to the empirical spread facts, we also report long-run

(ergodic) implications for borrowing and bond pricing. Table 2 compares the baseline
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economy without a ceiling to economies with an endogenous ceiling under both ( = 0 and
¢=2.

We discipline ¢ using the extended Cruces-Trebesch dataset and the cross-country
regressions reported in the introduction. Appendix Table 3 shows that the fiscal-rule indicator
enters with a negative and statistically significant coefficient across specifications, implying
that countries with a fiscal rule exhibit EMBIG spreads roughly 40-60 basis points lower
than otherwise similar economies. Because these estimates summarize the cross-country
association between debt-rule frameworks and borrowing costs—rather than the effect of a
literal statutory debt ceiling or an Argentina-specific reform—we use them as guidance to back
out the parameter ¢ (and its implied resource costs) required to generate a comparable decline
in spreads in the model, and then assess the associated welfare gains in an Argentina-like

economy.

Specifically, we calibrate ¢ separately for each curvature ¢ € {0,2} to match the empirical
reduction in average sovereign spreads associated with fiscal rules. For each (, we choose a
single parameter ¢ so that the model-implied ergodic mean spread falls by approximately
50 basis points relative to the no-ceiling benchmark. This discipline yields ¢ = 0.004 in the
fixed-cost economy and ¢ = 0.012 in the quadratic-cost economy (columns labeled “Calibrated
Cost”).

Because we adjust only one parameter in each economy, we do not target spread volatility
directly. Moreover, volatility is measured differently in the model and the data. The model is
calibrated at a quarterly frequency, so the volatility moment reported in Table 2 reflects the
dispersion of (quarterly) spreads generated by the quarterly model (reported in annualized
units). In the data, the volatility fact reported in Appendix Table 4 is based on higher-
frequency information (daily returns aggregated to monthly volatility). Nevertheless, the
model delivers the same qualitative implication as the data: introducing a credible ceiling

lowers both the level and the volatility of spreads.

Two findings stand out. First, consistent with the mechanism, introducing an enforceable
ceiling has only a modest effect on average indebtedness: mean debt-to-output falls from
0.71 to about 0.70 across specifications. Second, the implications for pricing are sizable.
Under the calibrated costs, mean spreads decline by roughly 55-60 basis points, and spread
volatility falls as well. Thus, the ceiling primarily operates by improving expected repayment
incentives—mitigating perceived dilution risk—rather than by materially compressing average

borrowing, which is why the largest quantitative effects appear in sovereign pricing moments.

Finally, it is useful to distinguish between the per-breach cost of deviating from the

ceiling and the average cost paid in equilibrium. In the fixed-cost economy (¢ = 0), ¢ is
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Table 2: Effect of the Debt Ceiling on Debt and Spreads

Calibrated Cost High Cost
No Ceiling | ¢ =.004 ¢ = .012 p=.4
Moment Baseline ‘ (=0 (=2 (=0 (=2
Debt-to-Y ratio 71 701 703 .698 .699
Mean Spread 0752 .0694 .0696 .0658  .0670
Volatility of the Spread .0408 .0375 .0376 .0355  .0369
Ceilings-costs-paid-to-Y ratio - 8.0e-4 4.2e-4  7.3e-3 1.6e-4

Note: The first column reports ergodic moments in the baseline model without a ceiling. Columns 3—4
report ceiling economies in which ¢ is calibrated separately for each ¢ to match the empirical reduction in
average spreads associated with fiscal rules (roughly 50 bps). Columns 5-6 report moments under a higher
enforcement level ¢ = 0.4. “Ceilings-costs-paid-to-Y ratio” is the unconditional ergodic average share of
output spent on ceiling-violation costs.

directly interpretable as a one-time output cost incurred whenever the ceiling is breached.
For instance, ¢ = 0.004 corresponds to a one-time cost of 0.4% of output in any period in
which the government borrows above the inherited ceiling. Yet the ergodic cost actually paid
is much smaller: Table 2 shows an unconditional average cost of 8.0 x 107, i.e. 0.08% of
output, because breaches occur only in a subset of states. In the quadratic-cost economy
(¢ = 2), the per-breach cost depends on the magnitude of the violation, so unconditional
costs can be even smaller for a given impact on incentives; indeed, the calibrated quadratic
specification delivers an average cost of 4.2 x 1074 (0.042% of output). This wedge between
enforcement “on paper” (the per-breach penalty) and enforcement “in practice” (the average
cost actually paid) is central for interpretation: relatively modest expected resource costs can

nonetheless sustain sizable improvements in credibility, borrowing incentives, and welfare.®

Taken together, Figure 7 and Table 2 show that sizable welfare and pricing gains do not
require extreme commitment. Credible enforcement—implemented through institutional,
political, or procedural costs of revising self-imposed ceilings—can substantially reduce
dilution risk and sovereign spreads while leaving average debt largely unchanged, with most

of the quantitative benefits realized at moderate enforcement levels.

8This distinction is also evident in the last two columns: when the per-breach penalty is raised substantially
(¢ = 0.4), breaches are deterred enough that the average costs actually paid decline in both cases, despite the
higher penalty.
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4 Conclusion

This paper has shown that debt-ceiling announcements can function as endogenous com-
mitment devices through which governments discipline their future selves. Embedding this
mechanism in a sovereign-default framework with long-term debt reveals that self-imposed
debt ceilings—when costly to revise—provide a tractable form of intermediate commitment:
they curb debt dilution by partially constraining future borrowing, yet remain flexible enough

to accommodate adverse shocks.

A three-period benchmark isolates the logic of the mechanism. Without commitment,
the government overborrows because it fails to internalize how additional issuance dilutes
legacy bondholders and raises default risk. Announcing a ceiling backed by a deviation
cost counteracts this bias. For low costs, the ceiling binds only partially and yields an
allocation strictly between the no-commitment and full-commitment benchmarks. Once
the cost reaches a simple threshold, the ceiling fully sustains the commitment allocation.
These results formally characterize the conditions under which an incumbent can induce its
preferred allocation through an appropriately chosen ceiling that its successor optimally finds

it costly to violate.

Extending the mechanism to a stochastic infinite-horizon model shows that the same logic
operates in a more realistic environment with long-term debt. Calibrated to Argentina, the
model predicts that governments voluntarily adopt “reasonable” debt ceilings: ones that are
sufficiently tight to mitigate dilution and lower spreads, but not so tight as to unduly restrict
fiscal flexibility. The resulting ceilings reduce borrowing costs and raise welfare relative to an

economy without such rules.

Overall, our results show that fiscal frameworks function best when they combine discipline
with flexibility. Self-imposed debt ceilings that are costly but can be revised can deliver
meaningful commitment gains even without external enforcement. A natural avenue for future
research is to examine the extent to which governments can control how tightly fiscal rules
are enforced. We analyze these questions in a companion paper that incorporates political
economy constraints that micro-found enforcement costs and escape clauses. This suggests
that fiscal institutions that shape how governments announce, update, and justify borrowing

limits play a larger role in debt sustainability than previously recognized.
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A Mathematical Details of the Three-Period Model

This appendix provides derivations for the three-period benchmark in Section 2. We first
derive expected utility at ¢t = 3 and the pricing function, then characterize the no-commitment
and commitment allocations, and finally analyze the intermediate-commitment case with a

debt ceiling.

A.1 Environment and Default

Time is t € {1,2,3}. The government receives endowments y; = y, = 0 and y3 = g > 0.

Preferences are CRRA with risk aversion o = 2:

u(c) = —1, B e (0,1].

All debt matures at t = 3. Let b; denote face value issued at t = 1 and by face value issued at

t = 2, so total obligations at t = 3 are

B = by + b,.

Following the main text, define the repayment slack

y—B

Y

= € (0,1], so that B=g(1—uz).
Default cost at ¢t = 3 is governed by a Pareto random variable 6 ~ Pareto(«) on [1, 00) with
shape parameter a = % If the government repays, it consumes c3 = y — B = gx. If it defaults,

it consumes c3 = /0. Default occurs whenever

Y|

1
> y—B <+— 60— =—.
y—B

|

With risk-neutral lenders and a unit gross risk-free rate, the bond price equals the

probability of repayment. Using the CDF of the Pareto distribution,

q(B) =Pr(6 > 1/z) = z* = /.

37



Expected utility at ¢ = 3 conditional on B is
1/x g
Elu(es) | Bl =Pr(0 > 1/z)u(y — B) + / u(@) o0~ gp
1

(o Ly /1”119-1/2619
yx 1 g2

e 9] 12
y 1

Ty Yy
1/2 1
S e

xy Yy
- 1(1 _ 29;—1/2),
7

which is equation (4) in the main text.

A.2 No Commitment

We first solve for the period-2 best response b;(bl) taking by as given, and then characterize

the period-1 choice b)'°.

Period-2 Problem

Given by, total debt is B = by + bs, the slack is z = 1 — (b + b3)/7, and the bond price is
q(B) = y/z. Period-2 consumption is

Cy = q(B) bg = \/Ebg
The period-2 government chooses by to maximize
V2 (br) = max {u(c2) + BE[u(cs) | B]}
2
1 B -1
— - Pl1-2 /2>
HE?X{ VT by + ] ( * }

where x = 1 — (by + by)/y and dz/dby = —1/3.
The first-order condition (FOC) is

3V2NC _ 212 B i 23/2 B ﬁx—fﬂ/? Ly
Oby b3 27 by 2 '
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Multiplying by 32?02 and using x = 1 — (by + bs) /7, this simplifies to

b b3

= 0.
2y 1]

Substituting © = 1 — (b; + by)/y and rearranging yields the quadratic in by /y:

() +3(8)+ (G -1) -0

We take the positive root and define

by(by) =

b
—3+\/9+166<1—§>] ,

which coincides with equation (10) in the main text.

Y
4

Using (27), the associated slack can be written as

af(by) =1- b +Z£(b1) = ﬁ(bggfl))z + %(bg(—;l)>

Differentiating (28) with respect to by gives

db} 2 2
b, ") =~ T gt
\/9+166<1—%> 4B =75 +3
From (29) we also obtain
db}
dby gy

The value of following the optimal no-commitment policy at ¢ = 2 is

(f(by))

NC(p\
) =

+§(L—2@wm»*”)

Differentiating (32) and using (30)—(31) yields

db}

d‘/QNC g (xT)fB/Z 1 B - 2
bhi) = — (1 + %2 4 ty—1/2 _dbi
do "V (1+3); b@+y}+@> (bh)?

where zt = z1(b;) and b, = bl(b,).
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Period-1 Problem

Anticipating the period-2 policy bl(b;), the period-1 government solves

VINC(by) = u(er) + V3 ¢ (by) = — + BV (by),

1
A/ (L’T(bl) b1

where zf(b;) and V;N9(by) are given in (29) and (32). The FOC is

dv;ve
0= dél (by)
- dibl((xf)l/z) . % Lt dibl<bil>] +5d1;'21jc o
Using
db.

and substituting (33), after simplification we obtain

)
3

(34) together with (28) characterizes the no-commitment allocation (b, bY¢) = (b%,b3) in

the main text.

(34)

OZ(xT)ll_ ]%ﬁ)%

Proof of Proposition 1

We now prove the maturity comparison in Proposition 1, reproduced here for convenience:

Fiz B € (0,1) and § > 0. Let (b¥,bS) be the commitment allocation and (bYC, b)) the

no-commitment allocation. Then

by'C b5 VB

> = .
bYC + 03¢ T b+ 1+VB

Under commitment, the FOCs (derived below) imply b$/b¢ = +/B. Suppose, for a

contradiction, that the no-commitment allocation were relatively more front-loaded:

NC
bQ

b9
i =V e
1 1
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Equivalently,

) by 2 (Ef
bNC’ — —
> () - () - L= gy <O

Y Y

But at (b)Y, b5), the no-commitment FOC (34) requires

)1 )

YO\ 2
Y

Since zT(b¥Y) > 0 and the second term is nonnegative, the bracketed expression must be

_1<b¥c>45(%> +1

= 0.
2 — NC
Y 74B(=-) +3

nonnegative, contradicting the inequality above. Hence

NC
b2

bN—cZ\/E,
1

which in turn implies
Bwe VB b
YO+ b)Y T 1+/B 0 405

A.3 Commitment Problem

Under commitment, the period-1 government chooses both b; and b,, taking into account
their joint effect on prices and default risk.
Using B = by + by, © = 1 — B/y, and ¢(B) = \/x, period-1 and period-2 consumptions
are ¢; = q(B)b; and ¢y = q(B)bs, and the lifetime objective is
1 5

Vi€ (by, by) = "B 4BV + 3% Elu(cs) | B, (35)

with Ef[u(cs) | B] given by (4).
Since x = (§ — B)/y and ¢ = /z,

, _dq dqdr 1 AN 1
Q(B)_dB_dde_Q\/E< )‘

and
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Differentiating (35) with respect to b; and by, and using 0B/0b, = 0B/dby = 1, we

obtain:

FOC with respect to 0.

ove  q+bid q 9 d
= B —
FOC with respect to b,.
ove ¢ q+byq  , d
= —E B] =0. 37
ob, b T Ty TP gl | B (37)

Subtracting (37) from (36) eliminates the common term *-LE[u(c3) | B]:

q+bd q q q+ b
0= a2 T g on . op B 272
q bl q*by q*by q bz
_ ab — Babi
q*oibs

which implies
e
o=V (38)
1
This is the maturity ratio reported in the main text.

Using b5 = /Bb¢ and B = b§ + 1S, we have

BC
_1——_1——1+\/_ ¢ = V€.

Y

Substituting these expressions into (36) (or equivalently (37)) and simplifying yields a
quadratic in b¢' /7
b2 | 3(1 b
(%) +3<+_¢3><_3) Y
y 2 y

The positive root is

B SUVE) 4 \/4ﬁ2 1+ 8+ 2\/‘) )
y 232
and, by (38),
po - \/452 91+ B+ 2\/_)
7 E 0

42



These are the closed-form expressions reported in the main text and used to construct the
commitment benchmark.
A.4 Intermediate Commitment with a Debt Ceiling

We now derive the key objects for the intermediate-commitment case with a debt ceiling b

and enforcement cost ¢.

Time-2 Problem and the Value Gap

At t = 2, given inherited b; and a ceiling b, the government chooses b, to maximize

Va(br.8) = max {u(cs) = ¢ 1y, + O Elulcs) | BI},

with ¢ = ¢(B)by, B ="0b1 + by, z =1 — B/j and q(B) = y/z. Define the continuation value
excluding the penalty:

folba | B0) = ulee) + BBluler) | Bl =~ + 2 (1-20717), w=1- 222

)
When ¢ = 0, the FOC coincides with the no-commitment case and yields the interior best
response bh(by) in (28).
With the ceiling and enforcement cost, the period-2 policy is

bi(by), if fo(bh(by) | by) — b|b),
by, B) (b1), if fo(by(b1) | b1) — ¢ > fo(b | b1)

b, otherwise.

For given by, a ceiling b is enforceable if the period-2 incentive constraint

fo@b ) 1 01) =0 < fo(b] 1)

holds. Among enforceable ceilings, the period-1 government chooses the largest one. This
implies that, whenever the ceiling is used (i.e., by(by,b) = b in equilibrium), it lies on the
indifference locus

fo(Dh(b1) | b1) — ¢ = fo(b | ba), (42)
which determines b as a function of b;.

To sustain the commitment allocation (b¢,5S), the planner sets b = bS" and chooses ¢ so
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that the period-2 government is indifferent between deviating to b;(blo) and respecting the
ceiling:
JolB3(b7) 1 67) = 6 = fo(bg | BD).

The smallest enforcement level that satisfies this is the value gap
Oumin = o (W05 |B) = fo 85 [8) > 0. (43)

which coincides with equation (15) in the main text.

Derivatives of the Continuation Value

For notational convenience, define

b1 +0b
ZL‘(bl,bg) =1- ! g 2, S(bl,bg) = l’(bl,b2>.

Then the continuation value (41) can be written as

1 3 5
Vibibe) = = + 5(1 " S, b2)>‘ (44)

We will use this representation to derive the generalized Euler equation under intermediate

commitment.

Using © =1 — (by + by)/y and 0x/0b; = —1/y for j = 1,2, we obtain

S

O0s . 1 1/2% o —igj_l/Q 0 <1> ix_3/2 ]: 172

b, 27 b, 2 7 b,

2y

Differentiating (44) gives:

Derivative with respect to b;.

oV 10 /1y 280 /1
ap; (01 b2) = —aa—bl(;) - ga—bl@
_ (B ~3/2
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Derivative with respect to b,.

1% 1 10 /1y 280 /1
ot = =G - T am )
1 1 B
— - + = | x(by, by) 732, 46
b3 \/(br, bs) <2yb2 y?)‘%< nhe) 40)

Envelope Result for the Disciplined Continuation Value

For each by, denote by b%(b;) the disciplined policy that respects the ceiling and solves the

indifference condition (42), and define the associated continuation value
V*(by) = V (b, 5(b1)).

For comparison, denote by b}(b;) the unconstrained best response from (28). A standard

implicit-function argument shows that

dv* oV oV db,

db, (by) = a—bl(bb b;(bl)) + a—bQ(bl, b;<bl))d_b1(bl)> (47)

so dV*/db, depends only on the unconstrained threat policy bl(b;) and its derivative. Substi-
tuting (45), (46), and (30) into (47) yields an explicit expression for dV*/db; in terms of b,
(b1, b}), and the parameters (8, ).

Time-1 Problem and Proof of Proposition 2

At time 1, with a ceiling policy that induces b3(b;), the government chooses b; to maximize

1
Vi(b) = u(ey) + V() = ———— + BV*(In),
l’*(bl) bl
where ) b (h
e (by) =1 - 2B,
Yy
The FOC is

*/ *(h —3/2 *(h —1/2 *
Sl o) ) ), (49

where dV*/db, is given by (47). Rewriting (48) in terms of B = by +b5(b1) and * = 1— B/y

yields the generalized Euler equation (16) in the main text.

0=

We are now in a position to prove Proposition 2.
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Proof of Proposition 2. Part (1) follows immediately from the fact that when ¢ = 0 the
penalty term in V5(by, ) is inactive, so the period-2 best response is bl(by) from (28). The
period-1 FOC then coincides with the no-commitment condition (11) in the main text

(equivalently (34) here), yielding (b)¢, bY€),

For part (2), fix 0 < ¢ < ¢min. For each by, the ceiling is enforceable only if the period-2

incentive constraint

FoOy(1) | b1) — ¢ < fo(b] by)

is satisfied. Since tighter ceilings reduce period-2 consumption without relaxing future
constraints, the period-1 government chooses the largest enforceable ceiling, which lies on
the indifference condition (42). At this ceiling, by(by,b) = b = bj(b;), and substituting B =
by + b5(b1) into the period-1 problem yields the generalized Euler equation (16). Comparing
with the commitment and no-commitment benchmarks, and using the fact that the ceiling
partially disciplines the period-2 overborrowing motive but does not eliminate it, implies
b € (bY,b6YC) and b5 € (b, b)),

Part (3) follows from the definition of ¢, in (43). For ¢ = ¢, the ceiling b = b5
exactly satisfies the incentive constraint at b; = b{, making the commitment allocation
(b°, 1Y) self-enforcing at t = 2. For any ¢ > ¢, deviating to b (bF) is strictly worse for
the period-2 government, so the same ceiling remains enforceable and (b¢,55) solves the
period-1 problem. Thus, for all ¢ > ¢, the unique sustainable allocation coincides with the

commitment benchmark. g

B Computational Strategy

This appendix describes how we compute the Markov-perfect equilibrium of the infinite-

horizon model with long-term debt and endogenous debt-ceiling announcements.

B.1 State Space, Grids, and Interpolation
The government’s state at the beginning of a period is
(y, B, B),

where y is the current endowment realization, B is the stock of outstanding long-term debt
carried into the period, and B is the inherited debt ceiling announced in the previous period.

The exogenous process for y follows the AR(1) specification described in Section 3, discretized
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using a finite Markov chain with /V, nodes and transition matrix F,.

We approximate the endogenous state variables on finite grids:

o A grid B={By,...,By,} for outstanding long-term debt.

e Agrid B={B,... ’BNB} for the announced debt ceiling.

Bounds [Buin, Bmax] and [Buin, Bmax] are chosen to be wide enough that the equilibrium
support of debt and ceilings lies in the interior of each grid. We use evenly spaced points for

both B and B in the baseline implementation.

For expectations and bond pricing, we repeatedly evaluate objects such as value functions,
default probabilities, and policy probabilities at off-grid points. To do so we construct

multidimensional interpolants (Matlab’s griddedInterpolant) on the tensor product grid
S=BxBx),

and use multilinear interpolation in (B, B,y) whenever necessary.

B.2 Extreme-Value Formulation and Policy Probabilities

We follow Dvorkin et al. (2021) and solve the government’s problem in a stochastic choice envi-
ronment with additive Type I extreme-value shocks. For each state (y, B, B) the government

has two types of actions:

1. Default: exit financial markets, consume p(y), and transition into autarky according
to (24).

2. Repay and choose next period’s debt and ceiling (B’, B'), subject to the implementability
constraint (21) and the ceiling cost ®(B’, B).

Let vP(y, B, B) denote the continuation value from default, and let
v(y, B, B; B', B')

denote the value from repaying and choosing (B’, B') optimally in the future.

We assume that:
e The default option is subject to an idiosyncratic taste shock 7.
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e Each repayment alternative (B’, B') is subject to a shock e®(B’, B').

Shocks are Type I extreme value, with scale parameter v > 0, and we allow for correlation
among repayment alternatives through a correlation parameter p € (0, 1), which nests the
standard logit when p = 1. Under this specification, the probability of choosing a particular
repayment action (B’, B’) conditional on repaying is

vE(y,B,B;B’,B’)
exp (LPLBLT)

) . vE(y,B,B;B",B")\’
(B//,B//) p p'U

G(B',B'|y,B,B) =

and the probability of default is

exp <—UD(y{,B7B)>

5 RB-B! B! p-
eXP(M) + [Z(B”,B”) eXp(W)}

In the implementation we work with “adjusted” value objects that factor out common

D(y, B, B) =

components of v and v” and compute G and D using vectorized expressions based on these

formulas.

B.3 Joint Iteration on Values and Bond Prices

Equilibrium is characterized by a fixed point in the space of (i) government value functions,
(ii) default and policy probabilities, and (iii) the bond-price function ¢(y, B, B'). We solve
for this fixed point by iterating on the joint mapping induced by the government’s Bellman

equation and the lenders’ zero-profit condition.

Initialization. We start from an initial guess for:

e The repayment value kernel vf(y, B, B; B', B') (equivalently, the object denoted v in
the code).

e The default value v?(y, B, B).

e The bond-price function qo(y, B’, B').

The initial conditions are either taken from the no-ceiling benchmark or from a previously

solved nearby parameterization to accelerate convergence.
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Step 1: Probabilities G and D. Given current value objects (vft,vP), we compute:

e The conditional repayment choice probabilities Gy(B’, B’ | y, B, B) as in the logit

formula above.

e The default probability D;(y, B, B).

Both objects are stored on the tensor-product grid and represented by griddedInterpolant

objects for efficient evaluation.

Step 2: Expected continuation values. Using GG; and D;, we compute expected contin-

uation values. For each state (y, B, B) we form

Ey [V(@/,B/,B/)} = ZPy(y/ ’ y) [Dt(ylvB/7B/> UtD(yla BI7B/> + (1 - Dt(yla Bla BI))QN)ﬁ(y/a Bla B/)] )

Y

where o is the expected value under the repayment-choice distribution G; in the following

period.

Step 3: Updating the value kernels. We then update the repayment and default values

using the Bellman equations:

vf.(y, B, B; B',B)) = u(cly, B, B; B', B)) + BE, [Vi(y/, B', B')]
v (y, B, B) = u(o(y)) + BE, [0 Vi(y', 0, Buax) + (1 = 0) v/ (y/)]

where consumption ¢(-) satisfies the implementability constraint with the chosen ceiling cost,

c+(0+(1-6)2)B=y+q(y,B,B)(B —(1-46§B)—®B,B).

To ensure numerical stability we apply a relaxation step:
R R R D D D
Vi AU+ (L=, vy = Avgy +H (1= X)o7,

with A € (0,1).

Step 4: Updating the bond-price function. Given default probabilities D,(y', B, B')

and the repayment-policy distribution G;, we impose the lenders’ zero-profit condition to
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obtain a new price function. For each (y, B', B'),

_ 1 _ _
G(y, B, B) = 1 By |(1=Duly', B', B)) (6 + (1 = 6)z + (1 = ) Ewr, e, [y’ B", B")]) |,
where the inner expectation integrates over next-period debt and ceiling choices using G;.”

Step 5: Convergence. Steps 1-4 are iterated until the sup-norm of value-function

differences is below a small tolerance,
R R D D -5
max{Hth = V' [loos V1 — vt ||oo} <1077,
at which point we treat (v® 0P G, D, q) as an equilibrium fixed point for the given value of

the debt-ceiling penalty parameter ¢ and cost curvature (.

B.4 Debt-Ceiling Costs and Variants

The cost of exceeding the debt ceiling is given by

and we consider two cases in the quantitative analysis:

e Fixed-cost case (( = 0): any breach of the announced ceiling triggers a discrete

penalty ¢, independent of the size of the violation.

e Quadratic-cost case (( = 2): larger violations of the ceiling are disproportionately
more costly, ® « (B’ — B)2.

For each specification we solve the equilibrium using the joint iteration described above. The
numerical algorithm is identical across cases; only the evaluation of ®(B’, B) changes.
B.5 Simulation and Welfare Computation

Once the equilibrium objects (G, D, q) have been computed for a given ¢, we simulate the

model to obtain model-implied moments and welfare.

9In the code this is implemented by looping over future grid points (B”, B"), accumulating the continuation
price, and then averaging with respect to both the income transition matrix and the policy probabilities.
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Simulation. We simulate long histories of the Markov state (y,, B;, B;) using:

1. Draw a sequence of shocks {y:} from the Markov chain P,.

2. At each t, compute default D(y;, B, B;) and repayment probabilities G(B;;1, B4 |
yt7 Bt7 Bt)

3. Draw default vs repayment using D, and conditional on repayment, draw (By, 1, Byi1)

using G.

We discard an initial burn-in and use the remainder to compute the distribution of debt,

default frequencies, average and volatility of spreads, and the behavior of announced ceilings.

Welfare. To evaluate the welfare effects of introducing debt-ceiling frictions we compute
expected lifetime utility under the equilibrium policies for each value of ¢. Let VF (yo, By | ¢)
denote the planner’s evaluation of welfare under the Markov-perfect government policies

associated with ¢, computed as

Vo (yo, By | ¢) = Eo

Zﬁwct)] ,

where the expectation is taken over simulated histories consistent with the equilibrium policy
functions. We report consumption-equivalent welfare gains relative to the benchmark without
debt-ceiling costs (¢ = 0), defined as the constant percentage adjustment in consumption

that makes the representative household indifferent between the two environments.

In all cases the algorithm converges rapidly and produces smooth policy functions and
bond-price schedules, thanks to the extreme-value formulation and the use of interpolation

on a moderate-sized multidimensional grid.

C Additional Figures and Tables
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Table 3: Regression Results for Monthly EMBIG

@) (2) (3) (4) (4) (6) @] ®)
Lagged dummies Full model dummies Lagged haircuts Full haircuts Dummies + haircuts  + rating  Fundamentals Full model
Fiscal rule -42.168* -59.280** -44.871* -60.552** -34.343 -34.800* -42.239* -52.712**
(23.690) (20.931) (23.436) (20.296) (23.241) (21.016) (22.292) (20.919)
Restructuring dummy, 1 year lag 193.362* 116.593* 217.225* 222.122* 97.124 91.950
(62.135) (65.816) (107.542) (113.010) (109.145) (118.450)
Restructuring dummy, 2 year lag 89.724* 100.703** 79.590 79.192 34.454 87.405
(50.654) (49.986) (96.852) (99.556) (95.717) (96.803)
Restructuring dummy, 3 year lag 29.323 50.934 -05.417 -96.716 -87.042 -20.725
(43.674) (38.757) (68.717) b% (64.259) (62.423)
Restructuring dummy, 4 and 5 year lag 13.717 50.128* -149.403** -150.527 -116.785* -82.993
(33.621) (28.860) (73.299) (60.360) (66.517) (58.449)
Restructuring dummy, 6 and 7 year lag -3.562 17.732 -169.371** -169.795**  -172.215**  -148.988***
(31.936) (26.701) (62.548) (50.134) (57.650) (47.820)
US low-grade corporate yield 56.243*** 55.155%** 55.996*** 54.983*** 56.090%** 56.099*** 54.961*** 55.100**
(4.205) (4.122) (4.200) (4.120) (4.210) (4.151) (4.167) (4.128)
Residuals -42.801** -42.323* -58.536** -41.427*
(5.256) (5.183) (6.215) (5.266)
Public debt to GNI 3.984% 4.060*** 4.823"+* 3.857*
(1.232) (1.213) (1.089) (1.229)
GDP real growth -9.945%** -10.659*** -13.559"** -10.367**
(2.558) (2.566) (3.143) (2.634)
Reserves to imports -1.573** -1.613"* -1.585"*
(0.452) (0.452) (0.453)
Inflation 0.265™ 0.214* 0.198
(0.123) (0.124) (0.121)
Budget balance to GDP -12.366*** -12.494*+* -12.219™*
(3.867) (3.832) (3.933)
Current account to GDP -6.228*** -5.789*** -5.826***
(1.637) (1.591) (1.647)
Political Risk Index (ICRG) -12.593** -12.765* -14.084*** -12.645***
(1.665) (1.683) (1.922) (1.674)
Haircut (SZ), 1 year lag 3.414% 2.377 -0.914 -0.902 -0.117 0.578
(1.315) (0.981) (1.994) (1.863) (2.009) (1.986)
Haircut (SZ), 2 year lag 1.853* 2.055** 0.027 0.020 0.740 0.154
(1.006) (0.799) (1.885) (1.823) (1.843) (1.683)
Haircut (SZ), 3 year lag 1.594 1.545* 3.323* 3.331* 2.845* 1.828
(1.015) (0.797) (1.679) (1.405) (1.427) (1.266)
Haircut (SZ), 4 and 5 year lag 1.233* 1.787+* 4.058*** 4.076*** 3.899*** 3.343**
(0.688) (0.619) (1.522) (1.276) (1.274) (1.277)
Haircut (SZ), 6 and 7 year lag 0.875 1.289** 4.159%* 4167 4.327 4179
(0.608) (0.526) (1.179) (1.005) (1.075) (0.923)
Constant -65.316* 772.939*** -64.273* 789.493*** -66.876* -66.584* 836.802** 780.092***
(36.288) (119.196) (36.640) (121.066) (36.385) (35.365) (132.951) (119.708)
Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
N 9194 9186 9194 9186 9194 9186 9194 9186
R-squared 0.596 0.690 0.595 0.691 0.603 0.661 0.648 0.693
Adjusted. R-squared 0.593 0.687 0.591 0.687 0.598 0.657 0.644 0.689

Notes: This table reports coefficients from unbalanced panel regressions of monthly EMBIG sovereign yield spreads—measured as the average
country spread over U.S. Treasury bonds (EMBIG stripped spread, in basis points)—on fiscal rules, restructuring history, haircut measures, global
risk factors, and macroeconomic fundamentals. The sample covers 57 emerging and developing economies over 1993-2019, augmenting the Cruces
and Trebesch (2013) dataset with a fiscal-rule indicator constructed from the IMF Fiscal Rules Database (the same source underlying Figure 1)
and using monthly restructuring and haircut variables following Cruces and Trebesch (2013) and Arce and Fourakis (2025). The country sample
includes Angola, Argentina, Azerbaijan, Bulgaria, Belarus, Bolivia, Brazil, Chile, China, Cameroon, Colombia, Costa Rica, Dominican Republic,
Ecuador, Egypt, Ethiopia, Gabon, Ghana, Guatemala, Honduras, Croatia, Hungary, Indonesia, India, Iraq, Jamaica, Jordan, Kazakhstan, Kenya,
Lebanon, Sri Lanka, Lithuania, Morocco, Mexico, Mongolia, Mozambique, Malaysia, Nigeria, Pakistan, Panama, Peru, Philippines, Papua New
Guinea, Poland, Paraguay, Russia, El Salvador, Serbia, Thailand, Tunisia, Turkey, Ukraine, Uruguay, Venezuela, Vietnam, South Africa, and
Zambia. Country-specific fundamentals are lagged 12 months, while the U.S. low-grade corporate yield and the ICRG Political Risk Index are
lagged 1 month. All regressions include country and time fixed effects, and robust standard errors are clustered at the country level.

*** Significant at the 1 percent level.

** Significant at the 5 percent level.

* Significant at the 10 percent level.
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Table 4: Regression Results for Monthly Standard Deviation of Daily EMBIG

) (2) ®3) (4) ) (6) Q] (8)
Lagged dummies Full model dummies Lagged haircuts Full haircuts Dummies + haircuts Dummies + haircuts 4 rating Fundamentals Full model
Fiscal rule -4.755*** -4.888*** -4.859*** -4.903*** -4.301** -4.236"** -4.602"* -4.524"*
(1.688) (1.592) (1.656) (1.571) (1.670) (1.616) (1.652) (1.601)
Restructuring dummy, 1 year lag -3.704 -7.229 1.237 1.191 -5.056 -4.897
(4.195) (4.506) (6.395) (6.601) (6.942) (7.171)
Restructuring dummy, 2 year lag -2.645 -1.876 2.596 2.576 0.594 3.377
(4.814) (5.026) (8.843) (9.050) (8.901) (9.173)
Restructuring dummy, 3 year lag -7.135* -5.920 -6.216 -6.298 -5.523 -2.023
(3.888) (3.888) (6.606) (6.495) (6.375) (6.487)
Restructuring dummy, 4 and 5 year lag -3.488 -2.115 -12.187 -12.256** -10.586* -8.195
(3.065) (2.859) (5.755) (5.330) (5.396) (5.245)
Restructuring dummy, 6 and 7 year lag -4.078* -3.142 -14.147 -14.184* -14.488*** -13.128*
(2.412) (2.342) (4.502) (4.240) (4.274) (4.236)
US low-grade corporate yield 3.885"* 3.836" 3.876" 3.832 3877 3877 3.827%* 3.834"
(0.453) (0.452) (0.453) (0.453) (0.453) (0.454) (0.451) (0.452)
Residuals -1.746* -1.7410 -2.549* -1.692***
(0.369) (0.365) (0.433) (0.371)
Public debt to GNI 0.139 0.142 0.211* 0.130
(0.096) (0.096) (0.089) (0.096)
GDP real growth -0.583"** -0.564*** -0.802* -0.587***
(0.191) (0.192) (0.217) (0.195)
Reserves to imports -0.040 -0.038 -0.040
(0.034) (0.034) (0.034)
Inflation 0.032%** 0.032** 0.030*
(0.008) (0.008) (0.008)
Budget balance to GDP -0.749*** -0.764*** -0.749***
(0.265) (0.264) (0.269)
Current account to GDP -0.258** -0.278** -0.257*
(0.116) (0.113) (0.120)
Political Risk Index (ICRG) -0.596"** -0.601*** -0.679** -0.605"**
(0.143) (0.142) (0.153) (0.144)
Haircut (SZ), 1 year lag -0.109 -0.150** -0.156 -0.155 -0.101 -0.074
(0.072) (0.071) (0.108) (0.105) (0.115) (0.118)
Haircut (SZ), 2 year lag -0.084 -0.071 -0.164 -0.167 -0.127 -0.161
(0.073) (0.074) (0.145) (0.149) (0.147) (0.149)
Haircut (SZ), 3 year lag -0.141* -0.143* -0.041 -0.042 -0.066 -0.123
(0.081) (0.073) (0.139) (0.135) (0.128) (0.126)
Haircut (SZ), 4 and 5 year lag -0.014 -0.004 0.209% 0.208* 0.204* 0.146
(0.062) (0.056) (0.118) (0.109) (0.105) (0.104)
Haircut (SZ), 6 and 7 year lag -0.018 -0.003 0.251%** 0.247%** 0.266** 0.249*
(0.046) (0.045) (0.086) (0.085) (0.084) (0.082)
Constant -9.527 28.370"* -9.754*** 28.145* -9.613*** -9.608*** 34.665 29.052***
(3.608) (10.371) (3.696) (10.386) (3.626) (3.637) (10.385) (10.431)
Country fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
8996 8989 8996 8989 8996 8989 8996 8989
R-squared 0.245 0.269 0.244 0.269 0.248 0.260 0.261 0.271
Adj. R-squared 0.238 0.262 0.237 0.261 0.240 0.252 0.253 0.263

Notes: This table reports coeflicients from unbalanced panel regressions with robust standard errors clustered at the country level. The dependent
variable is the monthly volatility of daily EMBIG returns, measured as their standard deviation. The dataset, country coverage, and variable
construction follow Table 3. The analysis covers 1994-2019. Country-specific fundamentals are lagged 12 months, while the U.S. low-grade corporate
yield and the ICRG Political Risk Index are lagged 1 month.

*** Significant at the 1 percent level.

** Significant at the 5 percent level.

* Significant at the 10 percent level.
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